Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce 9800 GT 1GB vs GeForce GTX 550 Ti

Intro

The GeForce 9800 GT 1GB makes use of a 65/55 nm design. nVidia has set the core frequency at 600 MHz. The GDDR3 RAM runs at a speed of 900 MHz on this specific model. It features 112 SPUs along with 56 Texture Address Units and 16 ROPs.

Compare those specs to the GeForce GTX 550 Ti, which comes with clock speeds of 900 MHz on the GPU, and 1026 MHz on the 1024 MB of GDDR5 RAM. It features 192 SPUs as well as 32 TAUs and 24 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 9800 GT 1GB 105 Watts
GeForce GTX 550 Ti 116 Watts
Difference: 11 Watts (10%)

Memory Bandwidth

Theoretically speaking, the GeForce GTX 550 Ti should perform a lot faster than the GeForce 9800 GT 1GB overall. (explain)

GeForce GTX 550 Ti 98496 MB/sec
GeForce 9800 GT 1GB 57600 MB/sec
Difference: 40896 (71%)

Texel Rate

The GeForce 9800 GT 1GB is a small bit (approximately 17%) faster with regards to texture filtering than the GeForce GTX 550 Ti. (explain)

GeForce 9800 GT 1GB 33600 Mtexels/sec
GeForce GTX 550 Ti 28800 Mtexels/sec
Difference: 4800 (17%)

Pixel Rate

If using high levels of AA is important to you, then the GeForce GTX 550 Ti is the winner, and very much so. (explain)

GeForce GTX 550 Ti 21600 Mpixels/sec
GeForce 9800 GT 1GB 9600 Mpixels/sec
Difference: 12000 (125%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 9800 GT 1GB

Amazon.com

GeForce GTX 550 Ti

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 9800 GT 1GB GeForce GTX 550 Ti
Manufacturer nVidia nVidia
Year July 2008 March 2011
Code Name G92a/b GF116
Memory 1024 MB 1024 MB
Core Speed 600 MHz 900 MHz
Memory Speed 1800 MHz 4104 MHz
Power (Max TDP) 105 watts 116 watts
Bandwidth 57600 MB/sec 98496 MB/sec
Texel Rate 33600 Mtexels/sec 28800 Mtexels/sec
Pixel Rate 9600 Mpixels/sec 21600 Mpixels/sec
Unified Shaders 112 192
Texture Mapping Units 56 32
Render Output Units 16 24
Bus Type GDDR3 GDDR5
Bus Width 256-bit 192-bit
Fab Process 65/55 nm 40 nm
Transistors 754 million 1170 million
Bus PCIe x16 2.0 PCIe 2.1 x16
DirectX Version DirectX 10 DirectX 11
OpenGL Version OpenGL 3.0 OpenGL 4.1

Memory Bandwidth: Memory bandwidth is the maximum amount of data (measured in MB per second) that can be moved across the external memory interface in a second. It's calculated by multiplying the interface width by its memory speed. In the case of DDR memory, it should be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The better the bandwidth is, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be processed in one second. This is worked out by multiplying the total number of texture units of the card by the core speed of the chip. The better the texel rate, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the most pixels that the graphics chip can possibly write to the local memory in a second - measured in millions of pixels per second. The figure is calculated by multiplying the number of colour ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel rate also depends on quite a few other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]