Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 9800 GT 1GB vs GeForce GTX 550 Ti

Intro

The GeForce 9800 GT 1GB features core clock speeds of 600 MHz on the GPU, and 900 MHz on the 1024 MB of GDDR3 memory. It features 112 SPUs along with 56 Texture Address Units and 16 ROPs.

Compare those specifications to the GeForce GTX 550 Ti, which features a clock frequency of 900 MHz and a GDDR5 memory frequency of 1026 MHz. It also uses a 192-bit bus, and makes use of a 40 nm design. It is made up of 192 SPUs, 32 TAUs, and 24 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 9800 GT 1GB 105 Watts
GeForce GTX 550 Ti 116 Watts
Difference: 11 Watts (10%)

Memory Bandwidth

Theoretically speaking, the GeForce GTX 550 Ti will be 71% quicker than the GeForce 9800 GT 1GB overall, because of its greater bandwidth. (explain)

GeForce GTX 550 Ti 98496 MB/sec
GeForce 9800 GT 1GB 57600 MB/sec
Difference: 40896 (71%)

Texel Rate

The GeForce 9800 GT 1GB should be just a bit (about 17%) faster with regards to anisotropic filtering than the GeForce GTX 550 Ti. (explain)

GeForce 9800 GT 1GB 33600 Mtexels/sec
GeForce GTX 550 Ti 28800 Mtexels/sec
Difference: 4800 (17%)

Pixel Rate

The GeForce GTX 550 Ti should be quite a bit (more or less 125%) faster with regards to anti-aliasing than the GeForce 9800 GT 1GB, and also capable of handling higher resolutions without slowing down too much. (explain)

GeForce GTX 550 Ti 21600 Mpixels/sec
GeForce 9800 GT 1GB 9600 Mpixels/sec
Difference: 12000 (125%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce 9800 GT 1GB

Amazon.com

GeForce GTX 550 Ti

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce 9800 GT 1GB GeForce GTX 550 Ti
Manufacturer nVidia nVidia
Year July 2008 March 2011
Code Name G92a/b GF116
Fab Process 65/55 nm 40 nm
Bus PCIe x16 2.0 PCIe 2.1 x16
Memory 1024 MB 1024 MB
Core Speed 600 MHz 900 MHz
Shader Speed 1500 MHz 1800 MHz
Memory Speed 900 MHz (1800 MHz effective) 1026 MHz (4104 MHz effective)
Unified Shaders 112 192
Texture Mapping Units 56 32
Render Output Units 16 24
Bus Type GDDR3 GDDR5
Bus Width 256-bit 192-bit
DirectX Version DirectX 10 DirectX 11
OpenGL Version OpenGL 3.0 OpenGL 4.1
Power (Max TDP) 105 watts 116 watts
Shader Model 4.0 5.0
Bandwidth 57600 MB/sec 98496 MB/sec
Texel Rate 33600 Mtexels/sec 28800 Mtexels/sec
Pixel Rate 9600 Mpixels/sec 21600 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of data (counted in MB per second) that can be transferred across the external memory interface in one second. It is calculated by multiplying the interface width by its memory clock speed. In the case of DDR memory, the result should be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The higher the memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are applied per second. This figure is calculated by multiplying the total texture units by the core speed of the chip. The higher this number, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the maximum amount of pixels the graphics card could possibly write to its local memory in a second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the number of Raster Operations Pipelines by the the core speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel rate also depends on many other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing