Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 9800 GT 1GB vs GeForce GTX 550 Ti

Intro

The GeForce 9800 GT 1GB comes with clock speeds of 600 MHz on the GPU, and 900 MHz on the 1024 MB of GDDR3 memory. It features 112 SPUs as well as 56 TAUs and 16 Rasterization Operator Units.

Compare all of that to the GeForce GTX 550 Ti, which makes use of a 40 nm design. nVidia has clocked the core frequency at 900 MHz. The GDDR5 RAM works at a frequency of 1026 MHz on this specific model. It features 192 SPUs as well as 32 Texture Address Units and 24 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 9800 GT 1GB 105 Watts
GeForce GTX 550 Ti 116 Watts
Difference: 11 Watts (10%)

Memory Bandwidth

The GeForce GTX 550 Ti should theoretically perform much faster than the GeForce 9800 GT 1GB overall. (explain)

GeForce GTX 550 Ti 98496 MB/sec
GeForce 9800 GT 1GB 57600 MB/sec
Difference: 40896 (71%)

Texel Rate

The GeForce 9800 GT 1GB is a bit (more or less 17%) faster with regards to anisotropic filtering than the GeForce GTX 550 Ti. (explain)

GeForce 9800 GT 1GB 33600 Mtexels/sec
GeForce GTX 550 Ti 28800 Mtexels/sec
Difference: 4800 (17%)

Pixel Rate

If running with high levels of AA is important to you, then the GeForce GTX 550 Ti is the winner, and very much so. (explain)

GeForce GTX 550 Ti 21600 Mpixels/sec
GeForce 9800 GT 1GB 9600 Mpixels/sec
Difference: 12000 (125%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Please note that the price comparisons are based on search keywords, and might not be the exact same card listed on this page. We have no control over the accuracy of their search results.

GeForce 9800 GT 1GB

Amazon.com

Other US-based stores

GeForce GTX 550 Ti

Amazon.com

Other US-based stores

Specifications

Model GeForce 9800 GT 1GB GeForce GTX 550 Ti
Manufacturer nVidia nVidia
Year July 2008 March 2011
Code Name G92a/b GF116
Fab Process 65/55 nm 40 nm
Bus PCIe x16 2.0 PCIe 2.1 x16
Memory 1024 MB 1024 MB
Core Speed 600 MHz 900 MHz
Shader Speed 1500 MHz 1800 MHz
Memory Speed 900 MHz (1800 MHz effective) 1026 MHz (4104 MHz effective)
Unified Shaders 112 192
Texture Mapping Units 56 32
Render Output Units 16 24
Bus Type GDDR3 GDDR5
Bus Width 256-bit 192-bit
DirectX Version DirectX 10 DirectX 11
OpenGL Version OpenGL 3.0 OpenGL 4.1
Power (Max TDP) 105 watts 116 watts
Shader Model 4.0 5.0
Bandwidth 57600 MB/sec 98496 MB/sec
Texel Rate 33600 Mtexels/sec 28800 Mtexels/sec
Pixel Rate 9600 Mpixels/sec 21600 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the largest amount of information (measured in MB per second) that can be transported over the external memory interface within a second. It's calculated by multiplying the interface width by its memory speed. If it uses DDR type memory, the result should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The higher the card's memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are processed in one second. This figure is worked out by multiplying the total amount of texture units of the card by the core speed of the chip. The higher the texel rate, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in one second.

Pixel Rate: Pixel rate is the most pixels that the graphics card could possibly write to the local memory in one second - measured in millions of pixels per second. The figure is worked out by multiplying the number of ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel rate also depends on lots of other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the potential to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree