Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:

GeForce GTX 550 Ti vs Radeon HD 4870 2GB


The GeForce GTX 550 Ti comes with core clock speeds of 900 MHz on the GPU, and 1026 MHz on the 1024 MB of GDDR5 memory. It features 192 SPUs along with 32 Texture Address Units and 24 Rasterization Operator Units.

Compare all that to the Radeon HD 4870 2GB, which has GPU clock speed of 750 MHz, and 2048 MB of GDDR5 RAM set to run at 900 MHz through a 256-bit bus. It also features 800(160x5) Stream Processors, 40 Texture Address Units, and 16 Raster Operation Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 550 Ti 116 Watts
Radeon HD 4870 2GB 150 Watts
Difference: 34 Watts (29%)

Memory Bandwidth

The Radeon HD 4870 2GB should in theory perform a bit faster than the GeForce GTX 550 Ti in general. (explain)

Radeon HD 4870 2GB 115200 MB/sec
GeForce GTX 550 Ti 98496 MB/sec
Difference: 16704 (17%)

Texel Rate

The Radeon HD 4870 2GB will be just a bit (more or less 4%) better at texture filtering than the GeForce GTX 550 Ti. (explain)

Radeon HD 4870 2GB 30000 Mtexels/sec
GeForce GTX 550 Ti 28800 Mtexels/sec
Difference: 1200 (4%)

Pixel Rate

The GeForce GTX 550 Ti should be much (about 80%) faster with regards to anti-aliasing than the Radeon HD 4870 2GB, and should be capable of handling higher resolutions without slowing down too much. (explain)

GeForce GTX 550 Ti 21600 Mpixels/sec
Radeon HD 4870 2GB 12000 Mpixels/sec
Difference: 9600 (80%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 550 Ti

Radeon HD 4870 2GB

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.


Display Specifications

Hide Specifications

Model GeForce GTX 550 Ti Radeon HD 4870 2GB
Manufacturer nVidia AMD
Year March 2011 Jun 25, 2008
Code Name GF116 RV770 XT
Memory 1024 MB 2048 MB
Core Speed 900 MHz 750 MHz
Memory Speed 4104 MHz 3600 MHz
Power (Max TDP) 116 watts 150 watts
Bandwidth 98496 MB/sec 115200 MB/sec
Texel Rate 28800 Mtexels/sec 30000 Mtexels/sec
Pixel Rate 21600 Mpixels/sec 12000 Mpixels/sec
Unified Shaders 192 800(160x5)
Texture Mapping Units 32 40
Render Output Units 24 16
Bus Type GDDR5 GDDR5
Bus Width 192-bit 256-bit
Fab Process 40 nm 55 nm
Transistors 1170 million 956 million
Bus PCIe 2.1 x16 PCIe 2.0 x16
DirectX Version DirectX 11 DirectX 10.1
OpenGL Version OpenGL 4.1 OpenGL 3.0

Memory Bandwidth: Memory bandwidth is the largest amount of data (measured in MB per second) that can be transferred across the external memory interface in a second. It is calculated by multiplying the bus width by its memory speed. If the card has DDR type memory, the result should be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The better the memory bandwidth, the faster the card will be in general. It especially helps with AA, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are processed per second. This number is worked out by multiplying the total texture units by the core speed of the chip. The better this number, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics chip can possibly write to the local memory in a second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the number of colour ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate also depends on quite a few other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the potential to reach the max fill rate.


Be the first to leave a comment!

Your email address will not be published. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield