Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:

GeForce GTX 550 Ti vs Radeon HD 4870 2GB


The GeForce GTX 550 Ti uses a 40 nm design. nVidia has clocked the core speed at 900 MHz. The GDDR5 memory works at a speed of 1026 MHz on this particular card. It features 192 SPUs along with 32 Texture Address Units and 24 Rasterization Operator Units.

Compare those specifications to the Radeon HD 4870 2GB, which has a GPU core clock speed of 750 MHz, and 2048 MB of GDDR5 memory running at 900 MHz through a 256-bit bus. It also is comprised of 800(160x5) SPUs, 40 TAUs, and 16 Raster Operation Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 550 Ti 116 Watts
Radeon HD 4870 2GB 150 Watts
Difference: 34 Watts (29%)

Memory Bandwidth

As far as performance goes, the Radeon HD 4870 2GB should theoretically be a bit superior to the GeForce GTX 550 Ti in general. (explain)

Radeon HD 4870 2GB 115200 MB/sec
GeForce GTX 550 Ti 98496 MB/sec
Difference: 16704 (17%)

Texel Rate

The Radeon HD 4870 2GB is just a bit (approximately 4%) better at AF than the GeForce GTX 550 Ti. (explain)

Radeon HD 4870 2GB 30000 Mtexels/sec
GeForce GTX 550 Ti 28800 Mtexels/sec
Difference: 1200 (4%)

Pixel Rate

The GeForce GTX 550 Ti is much (more or less 80%) more effective at anti-aliasing than the Radeon HD 4870 2GB, and should be capable of handling higher screen resolutions while still performing well. (explain)

GeForce GTX 550 Ti 21600 Mpixels/sec
Radeon HD 4870 2GB 12000 Mpixels/sec
Difference: 9600 (80%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 550 Ti

Radeon HD 4870 2GB

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.


Display Specifications

Hide Specifications

Model GeForce GTX 550 Ti Radeon HD 4870 2GB
Manufacturer nVidia AMD
Year March 2011 Jun 25, 2008
Code Name GF116 RV770 XT
Memory 1024 MB 2048 MB
Core Speed 900 MHz 750 MHz
Memory Speed 4104 MHz 3600 MHz
Power (Max TDP) 116 watts 150 watts
Bandwidth 98496 MB/sec 115200 MB/sec
Texel Rate 28800 Mtexels/sec 30000 Mtexels/sec
Pixel Rate 21600 Mpixels/sec 12000 Mpixels/sec
Unified Shaders 192 800(160x5)
Texture Mapping Units 32 40
Render Output Units 24 16
Bus Type GDDR5 GDDR5
Bus Width 192-bit 256-bit
Fab Process 40 nm 55 nm
Transistors 1170 million 956 million
Bus PCIe 2.1 x16 PCIe 2.0 x16
DirectX Version DirectX 11 DirectX 10.1
OpenGL Version OpenGL 4.1 OpenGL 3.0

Memory Bandwidth: Bandwidth is the maximum amount of data (in units of megabytes per second) that can be transported across the external memory interface in one second. The number is worked out by multiplying the bus width by its memory clock speed. In the case of DDR type memory, it must be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The better the memory bandwidth, the faster the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied per second. This is worked out by multiplying the total amount of texture units by the core speed of the chip. The higher the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the most pixels the graphics card could possibly record to the local memory per second - measured in millions of pixels per second. The figure is calculated by multiplying the amount of Render Output Units by the the core speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate also depends on many other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the potential to get to the maximum fill rate.


Be the first to leave a comment!

Your email address will not be published. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield