Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 550 Ti vs Radeon HD 4870 2GB

Intro

The GeForce GTX 550 Ti makes use of a 40 nm design. nVidia has clocked the core speed at 900 MHz. The GDDR5 RAM runs at a speed of 1026 MHz on this specific model. It features 192 SPUs as well as 32 Texture Address Units and 24 ROPs.

Compare that to the Radeon HD 4870 2GB, which has clock speeds of 750 MHz on the GPU, and 900 MHz on the 2048 MB of GDDR5 memory. It features 800(160x5) SPUs along with 40 TAUs and 16 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 550 Ti 116 Watts
Radeon HD 4870 2GB 150 Watts
Difference: 34 Watts (29%)

Memory Bandwidth

In theory, the Radeon HD 4870 2GB will be 17% quicker than the GeForce GTX 550 Ti in general, due to its greater data rate. (explain)

Radeon HD 4870 2GB 115200 MB/sec
GeForce GTX 550 Ti 98496 MB/sec
Difference: 16704 (17%)

Texel Rate

The Radeon HD 4870 2GB should be just a bit (more or less 4%) better at texture filtering than the GeForce GTX 550 Ti. (explain)

Radeon HD 4870 2GB 30000 Mtexels/sec
GeForce GTX 550 Ti 28800 Mtexels/sec
Difference: 1200 (4%)

Pixel Rate

The GeForce GTX 550 Ti will be much (about 80%) more effective at anti-aliasing than the Radeon HD 4870 2GB, and also capable of handling higher resolutions better. (explain)

GeForce GTX 550 Ti 21600 Mpixels/sec
Radeon HD 4870 2GB 12000 Mpixels/sec
Difference: 9600 (80%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 550 Ti

Amazon.com

Radeon HD 4870 2GB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 550 Ti Radeon HD 4870 2GB
Manufacturer nVidia AMD
Year March 2011 Jun 25, 2008
Code Name GF116 RV770 XT
Fab Process 40 nm 55 nm
Bus PCIe 2.1 x16 PCIe 2.0 x16
Memory 1024 MB 2048 MB
Core Speed 900 MHz 750 MHz
Shader Speed 1800 MHz (N/A) MHz
Memory Speed 1026 MHz (4104 MHz effective) 900 MHz (3600 MHz effective)
Unified Shaders 192 800(160x5)
Texture Mapping Units 32 40
Render Output Units 24 16
Bus Type GDDR5 GDDR5
Bus Width 192-bit 256-bit
DirectX Version DirectX 11 DirectX 10.1
OpenGL Version OpenGL 4.1 OpenGL 3.0
Power (Max TDP) 116 watts 150 watts
Shader Model 5.0 4.1
Bandwidth 98496 MB/sec 115200 MB/sec
Texel Rate 28800 Mtexels/sec 30000 Mtexels/sec
Pixel Rate 21600 Mpixels/sec 12000 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of information (in units of MB per second) that can be transported over the external memory interface in a second. The number is worked out by multiplying the card's bus width by its memory clock speed. If the card has DDR type memory, it should be multiplied by 2 again. If DDR5, multiply by 4 instead. The better the bandwidth is, the faster the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be processed in one second. This figure is worked out by multiplying the total number of texture units by the core speed of the chip. The better the texel rate, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in one second.

Pixel Rate: Pixel rate is the maximum amount of pixels the graphics card could possibly record to its local memory in one second - measured in millions of pixels per second. The number is calculated by multiplying the number of Raster Operations Pipelines by the the core speed of the card. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate is also dependant on many other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing