Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:

GeForce GTX 550 Ti vs Radeon HD 4870 512MB


The GeForce GTX 550 Ti features a GPU core speed of 900 MHz, and the 1024 MB of GDDR5 memory runs at 1026 MHz through a 192-bit bus. It also features 192 SPUs, 32 TAUs, and 24 ROPs.

Compare that to the Radeon HD 4870 512MB, which features GPU core speed of 750 MHz, and 512 MB of GDDR5 memory running at 900 MHz through a 256-bit bus. It also is made up of 800(160x5) SPUs, 40 Texture Address Units, and 16 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 550 Ti 116 Watts
Radeon HD 4870 512MB 150 Watts
Difference: 34 Watts (29%)

Memory Bandwidth

As far as performance goes, the Radeon HD 4870 512MB should in theory be just a bit superior to the GeForce GTX 550 Ti overall. (explain)

Radeon HD 4870 512MB 115200 MB/sec
GeForce GTX 550 Ti 98496 MB/sec
Difference: 16704 (17%)

Texel Rate

The Radeon HD 4870 512MB will be just a bit (about 4%) better at AF than the GeForce GTX 550 Ti. (explain)

Radeon HD 4870 512MB 30000 Mtexels/sec
GeForce GTX 550 Ti 28800 Mtexels/sec
Difference: 1200 (4%)

Pixel Rate

The GeForce GTX 550 Ti should be a lot (approximately 80%) better at full screen anti-aliasing than the Radeon HD 4870 512MB, and will be able to handle higher resolutions more effectively. (explain)

GeForce GTX 550 Ti 21600 Mpixels/sec
Radeon HD 4870 512MB 12000 Mpixels/sec
Difference: 9600 (80%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 550 Ti

Radeon HD 4870 512MB

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.


Display Specifications

Hide Specifications

Model GeForce GTX 550 Ti Radeon HD 4870 512MB
Manufacturer nVidia AMD
Year March 2011 Jun 25, 2008
Code Name GF116 RV770 XT
Memory 1024 MB 512 MB
Core Speed 900 MHz 750 MHz
Memory Speed 4104 MHz 3600 MHz
Power (Max TDP) 116 watts 150 watts
Bandwidth 98496 MB/sec 115200 MB/sec
Texel Rate 28800 Mtexels/sec 30000 Mtexels/sec
Pixel Rate 21600 Mpixels/sec 12000 Mpixels/sec
Unified Shaders 192 800(160x5)
Texture Mapping Units 32 40
Render Output Units 24 16
Bus Type GDDR5 GDDR5
Bus Width 192-bit 256-bit
Fab Process 40 nm 55 nm
Transistors 1170 million 956 million
Bus PCIe 2.1 x16 PCIe 2.0 x16
DirectX Version DirectX 11 DirectX 10.1
OpenGL Version OpenGL 4.1 OpenGL 3.0

Memory Bandwidth: Memory bandwidth is the max amount of information (measured in MB per second) that can be transported across the external memory interface within a second. The number is calculated by multiplying the bus width by the speed of its memory. In the case of DDR RAM, it should be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The higher the card's memory bandwidth, the faster the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be applied in one second. This figure is calculated by multiplying the total texture units by the core speed of the chip. The higher this number, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in one second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics chip could possibly write to its local memory in one second - measured in millions of pixels per second. The number is calculated by multiplying the number of ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate also depends on many other factors, most notably the memory bandwidth - the lower the bandwidth is, the lower the ability to reach the maximum fill rate.


Be the first to leave a comment!

Your email address will not be published. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield