Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce 9500 GT 1GB GDDR3 vs GeForce GT 240 GDDR5

Intro

The GeForce 9500 GT 1GB GDDR3 features a GPU core clock speed of 550 MHz, and the 1024 MB of GDDR3 memory is set to run at 800 MHz through a 128-bit bus. It also is made up of 32 SPUs, 16 Texture Address Units, and 8 Raster Operation Units.

Compare those specs to the GeForce GT 240 GDDR5, which comes with a GPU core clock speed of 550 MHz, and 512 MB of GDDR5 memory set to run at 850 MHz through a 128-bit bus. It also is comprised of 96 SPUs, 32 TAUs, and 8 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 9500 GT 1GB GDDR3 50 Watts
GeForce GT 240 GDDR5 70 Watts
Difference: 20 Watts (40%)

Memory Bandwidth

Theoretically speaking, the GeForce GT 240 GDDR5 is 113% faster than the GeForce 9500 GT 1GB GDDR3 overall, due to its higher data rate. (explain)

GeForce GT 240 GDDR5 54400 MB/sec
GeForce 9500 GT 1GB GDDR3 25600 MB/sec
Difference: 28800 (113%)

Texel Rate

The GeForce GT 240 GDDR5 will be quite a bit (approximately 100%) more effective at AF than the GeForce 9500 GT 1GB GDDR3. (explain)

GeForce GT 240 GDDR5 17600 Mtexels/sec
GeForce 9500 GT 1GB GDDR3 8800 Mtexels/sec
Difference: 8800 (100%)

Pixel Rate

Both cards have the exact same pixel fill rate, so in theory they should perform equally good at at anti-aliasing, and be capable of handling the same screen resolutions. (explain)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 9500 GT 1GB GDDR3

Amazon.com

GeForce GT 240 GDDR5

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 9500 GT 1GB GDDR3 GeForce GT 240 GDDR5
Manufacturer nVidia nVidia
Year July 2008 Novermber 2009
Code Name G96b GT215
Memory 1024 MB 512 MB
Core Speed 550 MHz 550 MHz
Memory Speed 1600 MHz 3400 MHz
Power (Max TDP) 50 watts 70 watts
Bandwidth 25600 MB/sec 54400 MB/sec
Texel Rate 8800 Mtexels/sec 17600 Mtexels/sec
Pixel Rate 4400 Mpixels/sec 4400 Mpixels/sec
Unified Shaders 32 96
Texture Mapping Units 16 32
Render Output Units 8 8
Bus Type GDDR3 GDDR5
Bus Width 128-bit 128-bit
Fab Process 55 nm 40 nm
Transistors 314 million 289 million
Bus PCIe x16 2.0, PCI PCIe x16
DirectX Version DirectX 10 DirectX 10.1
OpenGL Version OpenGL 3.0 OpenGL 3.2

Memory Bandwidth: Bandwidth is the maximum amount of data (measured in MB per second) that can be transferred over the external memory interface in one second. It is worked out by multiplying the card's bus width by the speed of its memory. If it uses DDR type RAM, it should be multiplied by 2 once again. If DDR5, multiply by 4 instead. The higher the memory bandwidth, the faster the card will be in general. It especially helps with AA, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be processed in one second. This number is calculated by multiplying the total number of texture units of the card by the core clock speed of the chip. The higher this number, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the maximum amount of pixels the video card could possibly record to its local memory per second - measured in millions of pixels per second. The number is calculated by multiplying the number of Render Output Units by the the core speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel output rate is also dependant on quite a few other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]