Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 9500 GT 1GB GDDR3 vs GeForce GT 240 GDDR5

Intro

The GeForce 9500 GT 1GB GDDR3 features core speeds of 550 MHz on the GPU, and 800 MHz on the 1024 MB of GDDR3 RAM. It features 32 SPUs along with 16 TAUs and 8 ROPs.

Compare those specs to the GeForce GT 240 GDDR5, which features a clock speed of 550 MHz and a GDDR5 memory frequency of 850 MHz. It also makes use of a 128-bit bus, and makes use of a 40 nm design. It is made up of 96 SPUs, 32 Texture Address Units, and 8 ROPs.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 9500 GT 1GB GDDR3 50 Watts
GeForce GT 240 GDDR5 70 Watts
Difference: 20 Watts (40%)

Memory Bandwidth

The GeForce GT 240 GDDR5 should theoretically be much faster than the GeForce 9500 GT 1GB GDDR3 overall. (explain)

GeForce GT 240 GDDR5 54400 MB/sec
GeForce 9500 GT 1GB GDDR3 25600 MB/sec
Difference: 28800 (113%)

Texel Rate

The GeForce GT 240 GDDR5 will be much (more or less 100%) better at anisotropic filtering than the GeForce 9500 GT 1GB GDDR3. (explain)

GeForce GT 240 GDDR5 17600 Mtexels/sec
GeForce 9500 GT 1GB GDDR3 8800 Mtexels/sec
Difference: 8800 (100%)

Pixel Rate

Both cards have exactly the same pixel rate, so theoretically they should be equally good at at FSAA, and be capable of handling the same screen resolutions. (explain)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 9500 GT 1GB GDDR3

Amazon.com

GeForce GT 240 GDDR5

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 9500 GT 1GB GDDR3 GeForce GT 240 GDDR5
Manufacturer nVidia nVidia
Year July 2008 Novermber 2009
Code Name G96b GT215
Fab Process 55 nm 40 nm
Bus PCIe x16 2.0, PCI PCIe x16
Memory 1024 MB 512 MB
Core Speed 550 MHz 550 MHz
Shader Speed 1400 MHz 1360 MHz
Memory Speed 800 MHz (1600 MHz effective) 850 MHz (3400 MHz effective)
Unified Shaders 32 96
Texture Mapping Units 16 32
Render Output Units 8 8
Bus Type GDDR3 GDDR5
Bus Width 128-bit 128-bit
DirectX Version DirectX 10 DirectX 10.1
OpenGL Version OpenGL 3.0 OpenGL 3.2
Power (Max TDP) 50 watts 70 watts
Shader Model 4.0 4.1
Bandwidth 25600 MB/sec 54400 MB/sec
Texel Rate 8800 Mtexels/sec 17600 Mtexels/sec
Pixel Rate 4400 Mpixels/sec 4400 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of data (counted in megabytes per second) that can be transferred past the external memory interface in a second. It's calculated by multiplying the interface width by its memory speed. If it uses DDR type memory, the result should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The better the card's memory bandwidth, the better the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are processed per second. This figure is calculated by multiplying the total number of texture units by the core clock speed of the chip. The higher the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics chip can possibly record to the local memory in one second - measured in millions of pixels per second. The number is worked out by multiplying the number of Raster Operations Pipelines by the the card's clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate is also dependant on lots of other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing