Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 9500 GT 1GB GDDR3 vs GeForce GT 240 GDDR5

Intro

The GeForce 9500 GT 1GB GDDR3 has a core clock speed of 550 MHz and a GDDR3 memory speed of 800 MHz. It also features a 128-bit bus, and makes use of a 55 nm design. It is comprised of 32 SPUs, 16 TAUs, and 8 ROPs.

Compare all that to the GeForce GT 240 GDDR5, which makes use of a 40 nm design. nVidia has clocked the core frequency at 550 MHz. The GDDR5 RAM works at a speed of 850 MHz on this particular card. It features 96 SPUs as well as 32 TAUs and 8 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 9500 GT 1GB GDDR3 50 Watts
GeForce GT 240 GDDR5 70 Watts
Difference: 20 Watts (40%)

Memory Bandwidth

The GeForce GT 240 GDDR5 should in theory be a lot faster than the GeForce 9500 GT 1GB GDDR3 in general. (explain)

GeForce GT 240 GDDR5 54400 MB/sec
GeForce 9500 GT 1GB GDDR3 25600 MB/sec
Difference: 28800 (113%)

Texel Rate

The GeForce GT 240 GDDR5 is much (approximately 100%) faster with regards to texture filtering than the GeForce 9500 GT 1GB GDDR3. (explain)

GeForce GT 240 GDDR5 17600 Mtexels/sec
GeForce 9500 GT 1GB GDDR3 8800 Mtexels/sec
Difference: 8800 (100%)

Pixel Rate

Both cards have exactly the same pixel fill rate, so theoretically they should perform equally good at at AA, and be able to handle the same resolutions. (explain)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce 9500 GT 1GB GDDR3

Amazon.com

GeForce GT 240 GDDR5

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce 9500 GT 1GB GDDR3 GeForce GT 240 GDDR5
Manufacturer nVidia nVidia
Year July 2008 Novermber 2009
Code Name G96b GT215
Fab Process 55 nm 40 nm
Bus PCIe x16 2.0, PCI PCIe x16
Memory 1024 MB 512 MB
Core Speed 550 MHz 550 MHz
Shader Speed 1400 MHz 1360 MHz
Memory Speed 800 MHz (1600 MHz effective) 850 MHz (3400 MHz effective)
Unified Shaders 32 96
Texture Mapping Units 16 32
Render Output Units 8 8
Bus Type GDDR3 GDDR5
Bus Width 128-bit 128-bit
DirectX Version DirectX 10 DirectX 10.1
OpenGL Version OpenGL 3.0 OpenGL 3.2
Power (Max TDP) 50 watts 70 watts
Shader Model 4.0 4.1
Bandwidth 25600 MB/sec 54400 MB/sec
Texel Rate 8800 Mtexels/sec 17600 Mtexels/sec
Pixel Rate 4400 Mpixels/sec 4400 Mpixels/sec

Memory Bandwidth: Bandwidth is the maximum amount of data (in units of megabytes per second) that can be transferred across the external memory interface in a second. It's calculated by multiplying the interface width by its memory clock speed. In the case of DDR type RAM, it must be multiplied by 2 once again. If DDR5, multiply by ANOTHER 2x. The better the bandwidth is, the better the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied in one second. This is worked out by multiplying the total amount of texture units of the card by the core clock speed of the chip. The better this number, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in a second.

Pixel Rate: Pixel rate is the most pixels the video card could possibly record to its local memory in one second - measured in millions of pixels per second. The figure is calculated by multiplying the number of ROPs by the clock speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel rate also depends on many other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree