Compare any two graphics cards:
VS

GeForce GTX 550 Ti vs Radeon HD 5770

Intro

The GeForce GTX 550 Ti features a clock speed of 900 MHz and a GDDR5 memory speed of 1026 MHz. It also uses a 192-bit memory bus, and makes use of a 40 nm design. It features 192 SPUs, 32 Texture Address Units, and 24 Raster Operation Units.

Compare those specs to the Radeon HD 5770, which makes use of a 40 nm design. AMD has set the core frequency at 850 MHz. The GDDR5 memory is set to run at a frequency of 1200 MHz on this specific model. It features 800(160x5) SPUs as well as 40 TAUs and 16 ROPs.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 5770 108 Watts
GeForce GTX 550 Ti 116 Watts
Difference: 8 Watts (7%)

Memory Bandwidth

The GeForce GTX 550 Ti should in theory perform much faster than the Radeon HD 5770 overall. (explain)

GeForce GTX 550 Ti 98496 MB/sec
Radeon HD 5770 76800 MB/sec
Difference: 21696 (28%)

Texel Rate

The Radeon HD 5770 will be a bit (about 18%) better at texture filtering than the GeForce GTX 550 Ti. (explain)

Radeon HD 5770 34000 Mtexels/sec
GeForce GTX 550 Ti 28800 Mtexels/sec
Difference: 5200 (18%)

Pixel Rate

If running with lots of anti-aliasing is important to you, then the GeForce GTX 550 Ti is superior to the Radeon HD 5770, by a large margin. (explain)

GeForce GTX 550 Ti 21600 Mpixels/sec
Radeon HD 5770 13600 Mpixels/sec
Difference: 8000 (59%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 550 Ti

Amazon.com

Radeon HD 5770

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 550 Ti Radeon HD 5770
Manufacturer nVidia AMD
Year March 2011 October 13, 2009
Code Name GF116 Juniper XT
Fab Process 40 nm 40 nm
Bus PCIe 2.1 x16 PCIe 2.1 x16
Memory 1024 MB 1024 MB
Core Speed 900 MHz 850 MHz
Shader Speed 1800 MHz (N/A) MHz
Memory Speed 4104 MHz 4800 MHz
Unified Shaders 192 800(160x5)
Texture Mapping Units 32 40
Render Output Units 24 16
Bus Type GDDR5 GDDR5
Bus Width 192-bit 128-bit
DirectX Version DirectX 11 DirectX 11
OpenGL Version OpenGL 4.1 OpenGL 3.2
Power (Max TDP) 116 watts 108 watts
Shader Model 5.0 5.0
Bandwidth 98496 MB/sec 76800 MB/sec
Texel Rate 28800 Mtexels/sec 34000 Mtexels/sec
Pixel Rate 21600 Mpixels/sec 13600 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the largest amount of data (counted in megabytes per second) that can be transferred past the external memory interface in one second. The number is worked out by multiplying the card's interface width by its memory clock speed. If the card has DDR RAM, it should be multiplied by 2 once again. If it uses DDR5, multiply by 4 instead. The better the card's memory bandwidth, the faster the card will be in general. It especially helps with AA, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be processed per second. This number is calculated by multiplying the total texture units by the core speed of the chip. The better the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the most pixels that the graphics card can possibly write to the local memory in a second - measured in millions of pixels per second. The figure is calculated by multiplying the number of ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel output rate also depends on lots of other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing