Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 550 Ti vs Radeon HD 6750

Intro

The GeForce GTX 550 Ti uses a 40 nm design. nVidia has clocked the core frequency at 900 MHz. The GDDR5 memory runs at a frequency of 1026 MHz on this specific model. It features 192 SPUs as well as 32 TAUs and 24 Rasterization Operator Units.

Compare those specifications to the Radeon HD 6750, which features a GPU core clock speed of 725 MHz, and 512 MB of GDDR5 memory set to run at 1000 MHz through a 128-bit bus. It also features 720 SPUs, 36 Texture Address Units, and 16 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 6750 86 Watts
GeForce GTX 550 Ti 116 Watts
Difference: 30 Watts (35%)

Memory Bandwidth

Theoretically speaking, the GeForce GTX 550 Ti will be 54% quicker than the Radeon HD 6750 in general, because of its higher bandwidth. (explain)

GeForce GTX 550 Ti 98496 MB/sec
Radeon HD 6750 64000 MB/sec
Difference: 34496 (54%)

Texel Rate

The GeForce GTX 550 Ti is a little bit (about 10%) more effective at anisotropic filtering than the Radeon HD 6750. (explain)

GeForce GTX 550 Ti 28800 Mtexels/sec
Radeon HD 6750 26100 Mtexels/sec
Difference: 2700 (10%)

Pixel Rate

If using lots of anti-aliasing is important to you, then the GeForce GTX 550 Ti is the winner, and very much so. (explain)

GeForce GTX 550 Ti 21600 Mpixels/sec
Radeon HD 6750 11600 Mpixels/sec
Difference: 10000 (86%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 550 Ti

Amazon.com

Radeon HD 6750

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 550 Ti Radeon HD 6750
Manufacturer nVidia AMD
Year March 2011 January 2011
Code Name GF116 Juniper Pro
Fab Process 40 nm 40 nm
Bus PCIe 2.1 x16 PCIe x16
Memory 1024 MB 512 MB
Core Speed 900 MHz 725 MHz
Shader Speed 1800 MHz (N/A) MHz
Memory Speed 1026 MHz (4104 MHz effective) 1000 MHz (4000 MHz effective)
Unified Shaders 192 720
Texture Mapping Units 32 36
Render Output Units 24 16
Bus Type GDDR5 GDDR5
Bus Width 192-bit 128-bit
DirectX Version DirectX 11 DirectX 11
OpenGL Version OpenGL 4.1 OpenGL 4.0
Power (Max TDP) 116 watts 86 watts
Shader Model 5.0 5.0
Bandwidth 98496 MB/sec 64000 MB/sec
Texel Rate 28800 Mtexels/sec 26100 Mtexels/sec
Pixel Rate 21600 Mpixels/sec 11600 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of information (in units of megabytes per second) that can be transferred over the external memory interface in a second. The number is calculated by multiplying the card's bus width by its memory speed. In the case of DDR type RAM, it must be multiplied by 2 once again. If DDR5, multiply by 4 instead. The higher the card's memory bandwidth, the better the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are processed per second. This number is worked out by multiplying the total number of texture units by the core clock speed of the chip. The better the texel rate, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the most pixels the video card can possibly record to its local memory in one second - measured in millions of pixels per second. The number is calculated by multiplying the amount of ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate is also dependant on quite a few other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the ability to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree