Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce 8800 GS vs GeForce GT 210

Intro

The GeForce 8800 GS has clock speeds of 550 MHz on the GPU, and 800 MHz on the 384 MB of GDDR3 memory. It features 96 SPUs along with 48 TAUs and 12 ROPs.

Compare that to the GeForce GT 210, which comes with GPU clock speed of 589 MHz, and 512 MB of DDR3 RAM set to run at 800 MHz through a 64-bit bus. It also is made up of 16 Stream Processors, 8 TAUs, and 4 Raster Operation Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 210 31 Watts
GeForce 8800 GS 105 Watts
Difference: 74 Watts (239%)

Memory Bandwidth

In theory, the GeForce 8800 GS should be 200% faster than the GeForce GT 210 in general, due to its greater data rate. (explain)

GeForce 8800 GS 38400 MB/sec
GeForce GT 210 12800 MB/sec
Difference: 25600 (200%)

Texel Rate

The GeForce 8800 GS should be quite a bit (about 460%) more effective at AF than the GeForce GT 210. (explain)

GeForce 8800 GS 26400 Mtexels/sec
GeForce GT 210 4712 Mtexels/sec
Difference: 21688 (460%)

Pixel Rate

The GeForce 8800 GS is quite a bit (approximately 180%) faster with regards to anti-aliasing than the GeForce GT 210, and should be able to handle higher resolutions without losing too much performance. (explain)

GeForce 8800 GS 6600 Mpixels/sec
GeForce GT 210 2356 Mpixels/sec
Difference: 4244 (180%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 8800 GS

Amazon.com

GeForce GT 210

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 8800 GS GeForce GT 210
Manufacturer nVidia nVidia
Year Jan 2008 October 2009
Code Name G92 GT218
Memory 384 MB 512 MB
Core Speed 550 MHz 589 MHz
Memory Speed 1600 MHz 1600 MHz
Power (Max TDP) 105 watts 31 watts
Bandwidth 38400 MB/sec 12800 MB/sec
Texel Rate 26400 Mtexels/sec 4712 Mtexels/sec
Pixel Rate 6600 Mpixels/sec 2356 Mpixels/sec
Unified Shaders 96 16
Texture Mapping Units 48 8
Render Output Units 12 4
Bus Type GDDR3 DDR3
Bus Width 192-bit 64-bit
Fab Process 65 nm 40 nm
Transistors 754 million 260 million
Bus PCIe x16 2.0 PCIe 2.0
DirectX Version DirectX 10 DirectX 10.1
OpenGL Version OpenGL 3.0 OpenGL 3.2

Memory Bandwidth: Bandwidth is the maximum amount of information (in units of megabytes per second) that can be transferred over the external memory interface within a second. The number is calculated by multiplying the bus width by its memory speed. If it uses DDR memory, the result should be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The higher the bandwidth is, the faster the card will be in general. It especially helps with AA, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are processed in one second. This is worked out by multiplying the total amount of texture units by the core speed of the chip. The higher the texel rate, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics card can possibly write to its local memory in a second - measured in millions of pixels per second. The figure is calculated by multiplying the number of Raster Operations Pipelines by the the core speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel rate is also dependant on lots of other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]