Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 8800 GS vs GeForce GT 210

Intro

The GeForce 8800 GS has a clock speed of 550 MHz and a GDDR3 memory speed of 800 MHz. It also uses a 192-bit memory bus, and uses a 65 nm design. It features 96 SPUs, 48 TAUs, and 12 ROPs.

Compare those specifications to the GeForce GT 210, which features a core clock frequency of 589 MHz and a DDR3 memory frequency of 800 MHz. It also makes use of a 64-bit memory bus, and uses a 40 nm design. It is comprised of 16 SPUs, 8 TAUs, and 4 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 210 31 Watts
GeForce 8800 GS 105 Watts
Difference: 74 Watts (239%)

Memory Bandwidth

In theory, the GeForce 8800 GS should be 200% faster than the GeForce GT 210 overall, because of its greater bandwidth. (explain)

GeForce 8800 GS 38400 MB/sec
GeForce GT 210 12800 MB/sec
Difference: 25600 (200%)

Texel Rate

The GeForce 8800 GS is quite a bit (more or less 460%) faster with regards to texture filtering than the GeForce GT 210. (explain)

GeForce 8800 GS 26400 Mtexels/sec
GeForce GT 210 4712 Mtexels/sec
Difference: 21688 (460%)

Pixel Rate

The GeForce 8800 GS should be much (about 180%) more effective at full screen anti-aliasing than the GeForce GT 210, and also will be capable of handling higher resolutions without slowing down too much. (explain)

GeForce 8800 GS 6600 Mpixels/sec
GeForce GT 210 2356 Mpixels/sec
Difference: 4244 (180%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce 8800 GS

Amazon.com

GeForce GT 210

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce 8800 GS GeForce GT 210
Manufacturer nVidia nVidia
Year Jan 2008 October 2009
Code Name G92 GT218
Fab Process 65 nm 40 nm
Bus PCIe x16 2.0 PCIe 2.0
Memory 384 MB 512 MB
Core Speed 550 MHz 589 MHz
Shader Speed 1375 MHz 1402 MHz
Memory Speed 800 MHz (1600 MHz effective) 800 MHz (1600 MHz effective)
Unified Shaders 96 16
Texture Mapping Units 48 8
Render Output Units 12 4
Bus Type GDDR3 DDR3
Bus Width 192-bit 64-bit
DirectX Version DirectX 10 DirectX 10.1
OpenGL Version OpenGL 3.0 OpenGL 3.2
Power (Max TDP) 105 watts 31 watts
Shader Model 4.0 4.1
Bandwidth 38400 MB/sec 12800 MB/sec
Texel Rate 26400 Mtexels/sec 4712 Mtexels/sec
Pixel Rate 6600 Mpixels/sec 2356 Mpixels/sec

Memory Bandwidth: Bandwidth is the largest amount of data (in units of megabytes per second) that can be moved past the external memory interface within a second. It is worked out by multiplying the card's bus width by the speed of its memory. If the card has DDR type memory, it must be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The better the memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be applied per second. This is calculated by multiplying the total texture units of the card by the core speed of the chip. The higher the texel rate, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in a second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics chip could possibly write to its local memory in a second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the number of colour ROPs by the clock speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel output rate is also dependant on many other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing