Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 480 vs Radeon HD 6850

Intro

The GeForce GTX 480 comes with clock speeds of 700 MHz on the GPU, and 924 MHz on the 1536 MB of GDDR5 memory. It features 480 SPUs as well as 60 TAUs and 48 ROPs.

Compare those specifications to the Radeon HD 6850, which features core speeds of 775 MHz on the GPU, and 1000 MHz on the 1024 MB of GDDR5 RAM. It features 960 SPUs along with 48 Texture Address Units and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 6850 127 Watts
GeForce GTX 480 250 Watts
Difference: 123 Watts (97%)

Memory Bandwidth

Performance-wise, the GeForce GTX 480 should theoretically be quite a bit superior to the Radeon HD 6850 in general. (explain)

GeForce GTX 480 177408 MB/sec
Radeon HD 6850 128000 MB/sec
Difference: 49408 (39%)

Texel Rate

The GeForce GTX 480 should be just a bit (approximately 13%) faster with regards to AF than the Radeon HD 6850. (explain)

GeForce GTX 480 42000 Mtexels/sec
Radeon HD 6850 37200 Mtexels/sec
Difference: 4800 (13%)

Pixel Rate

If running with lots of anti-aliasing is important to you, then the GeForce GTX 480 is the winner, and very much so. (explain)

GeForce GTX 480 33600 Mpixels/sec
Radeon HD 6850 24800 Mpixels/sec
Difference: 8800 (35%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 480

Amazon.com

Radeon HD 6850

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 480 Radeon HD 6850
Manufacturer nVidia AMD
Year March 2010 October 2010
Code Name GF100 Barts Pro
Fab Process 40 nm 40 nm
Bus PCIe x16 PCIe x16
Memory 1536 MB 1024 MB
Core Speed 700 MHz 775 MHz
Shader Speed 1401 MHz (N/A) MHz
Memory Speed 924 MHz (3696 MHz effective) 1000 MHz (4000 MHz effective)
Unified Shaders 480 960
Texture Mapping Units 60 48
Render Output Units 48 32
Bus Type GDDR5 GDDR5
Bus Width 384-bit 256-bit
DirectX Version DirectX 11 DirectX 11
OpenGL Version OpenGL 4.1 OpenGL 4.1
Power (Max TDP) 250 watts 127 watts
Shader Model 5.0 5.0
Bandwidth 177408 MB/sec 128000 MB/sec
Texel Rate 42000 Mtexels/sec 37200 Mtexels/sec
Pixel Rate 33600 Mpixels/sec 24800 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of information (in units of megabytes per second) that can be transported across the external memory interface in one second. The number is calculated by multiplying the bus width by its memory speed. If the card has DDR memory, it must be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The higher the card's memory bandwidth, the faster the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are applied in one second. This figure is worked out by multiplying the total number of texture units of the card by the core clock speed of the chip. The better the texel rate, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics card could possibly record to the local memory in a second - measured in millions of pixels per second. The figure is calculated by multiplying the amount of ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel rate also depends on lots of other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the ability to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree