Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 480 vs Radeon HD 6850

Intro

The GeForce GTX 480 uses a 40 nm design. nVidia has clocked the core speed at 700 MHz. The GDDR5 RAM works at a frequency of 924 MHz on this card. It features 480 SPUs along with 60 Texture Address Units and 48 Rasterization Operator Units.

Compare those specifications to the Radeon HD 6850, which has a core clock speed of 775 MHz and a GDDR5 memory frequency of 1000 MHz. It also makes use of a 256-bit bus, and makes use of a 40 nm design. It is comprised of 960 SPUs, 48 TAUs, and 32 ROPs.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 6850 127 Watts
GeForce GTX 480 250 Watts
Difference: 123 Watts (97%)

Memory Bandwidth

Theoretically, the GeForce GTX 480 should perform a lot faster than the Radeon HD 6850 in general. (explain)

GeForce GTX 480 177408 MB/sec
Radeon HD 6850 128000 MB/sec
Difference: 49408 (39%)

Texel Rate

The GeForce GTX 480 should be a bit (approximately 13%) more effective at anisotropic filtering than the Radeon HD 6850. (explain)

GeForce GTX 480 42000 Mtexels/sec
Radeon HD 6850 37200 Mtexels/sec
Difference: 4800 (13%)

Pixel Rate

If using a high resolution is important to you, then the GeForce GTX 480 is the winner, and very much so. (explain)

GeForce GTX 480 33600 Mpixels/sec
Radeon HD 6850 24800 Mpixels/sec
Difference: 8800 (35%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 480

Amazon.com

Radeon HD 6850

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 480 Radeon HD 6850
Manufacturer nVidia AMD
Year March 2010 October 2010
Code Name GF100 Barts Pro
Fab Process 40 nm 40 nm
Bus PCIe x16 PCIe x16
Memory 1536 MB 1024 MB
Core Speed 700 MHz 775 MHz
Shader Speed 1401 MHz (N/A) MHz
Memory Speed 924 MHz (3696 MHz effective) 1000 MHz (4000 MHz effective)
Unified Shaders 480 960
Texture Mapping Units 60 48
Render Output Units 48 32
Bus Type GDDR5 GDDR5
Bus Width 384-bit 256-bit
DirectX Version DirectX 11 DirectX 11
OpenGL Version OpenGL 4.1 OpenGL 4.1
Power (Max TDP) 250 watts 127 watts
Shader Model 5.0 5.0
Bandwidth 177408 MB/sec 128000 MB/sec
Texel Rate 42000 Mtexels/sec 37200 Mtexels/sec
Pixel Rate 33600 Mpixels/sec 24800 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the largest amount of information (in units of MB per second) that can be transported past the external memory interface in one second. The number is calculated by multiplying the interface width by its memory speed. If it uses DDR type RAM, the result should be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The higher the card's memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are processed in one second. This number is calculated by multiplying the total amount of texture units by the core clock speed of the chip. The better the texel rate, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels in a second.

Pixel Rate: Pixel rate is the most pixels that the graphics card can possibly write to its local memory per second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the amount of colour ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate is also dependant on quite a few other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing