Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 480 vs Radeon HD 6850

Intro

The GeForce GTX 480 features core clock speeds of 700 MHz on the GPU, and 924 MHz on the 1536 MB of GDDR5 RAM. It features 480 SPUs along with 60 TAUs and 48 ROPs.

Compare those specs to the Radeon HD 6850, which uses a 40 nm design. AMD has set the core frequency at 775 MHz. The GDDR5 RAM is set to run at a speed of 1000 MHz on this model. It features 960 SPUs along with 48 TAUs and 32 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 6850 127 Watts
GeForce GTX 480 250 Watts
Difference: 123 Watts (97%)

Memory Bandwidth

Theoretically, the GeForce GTX 480 should be much faster than the Radeon HD 6850 overall. (explain)

GeForce GTX 480 177408 MB/sec
Radeon HD 6850 128000 MB/sec
Difference: 49408 (39%)

Texel Rate

The GeForce GTX 480 should be just a bit (approximately 13%) faster with regards to anisotropic filtering than the Radeon HD 6850. (explain)

GeForce GTX 480 42000 Mtexels/sec
Radeon HD 6850 37200 Mtexels/sec
Difference: 4800 (13%)

Pixel Rate

If running with a high screen resolution is important to you, then the GeForce GTX 480 is superior to the Radeon HD 6850, by far. (explain)

GeForce GTX 480 33600 Mpixels/sec
Radeon HD 6850 24800 Mpixels/sec
Difference: 8800 (35%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 480

Amazon.com

Radeon HD 6850

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 480 Radeon HD 6850
Manufacturer nVidia AMD
Year March 2010 October 2010
Code Name GF100 Barts Pro
Fab Process 40 nm 40 nm
Bus PCIe x16 PCIe x16
Memory 1536 MB 1024 MB
Core Speed 700 MHz 775 MHz
Shader Speed 1401 MHz (N/A) MHz
Memory Speed 924 MHz (3696 MHz effective) 1000 MHz (4000 MHz effective)
Unified Shaders 480 960
Texture Mapping Units 60 48
Render Output Units 48 32
Bus Type GDDR5 GDDR5
Bus Width 384-bit 256-bit
DirectX Version DirectX 11 DirectX 11
OpenGL Version OpenGL 4.1 OpenGL 4.1
Power (Max TDP) 250 watts 127 watts
Shader Model 5.0 5.0
Bandwidth 177408 MB/sec 128000 MB/sec
Texel Rate 42000 Mtexels/sec 37200 Mtexels/sec
Pixel Rate 33600 Mpixels/sec 24800 Mpixels/sec

Memory Bandwidth: Bandwidth is the maximum amount of information (in units of megabytes per second) that can be moved over the external memory interface in a second. It's calculated by multiplying the card's interface width by the speed of its memory. If it uses DDR type RAM, the result should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The better the card's memory bandwidth, the faster the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be applied in one second. This is worked out by multiplying the total number of texture units of the card by the core speed of the chip. The better this number, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics chip could possibly write to its local memory in one second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the number of ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel output rate also depends on lots of other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree