Compare any two graphics cards:
VS

GeForce GT 210 vs Radeon HD 4550 512MB

Intro

The GeForce GT 210 uses a 40 nm design. nVidia has set the core frequency at 589 MHz. The DDR3 RAM is set to run at a speed of 800 MHz on this specific card. It features 16 SPUs along with 8 TAUs and 4 Rasterization Operator Units.

Compare that to the Radeon HD 4550 512MB, which features core speeds of 600 MHz on the GPU, and 800 MHz on the 512 MB of GDDR3 memory. It features 80(16x5) SPUs as well as 8 TAUs and 4 Rasterization Operator Units.

Display Graphs

Hide Graphs

Fallout 3

Settings: High Settings
AA: none
AF: none
Resolution: 1280x1024
Test Machine: Intel Core i7-920,3 x 1 GB Ram,Windows Vista Ultimate 64 Bit SP1 (Source)
Radeon HD 4550 512MB 26 FPS
GeForce GT 210 20 FPS
Difference: 6 FPS (30%)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 4550 512MB 25 Watts
GeForce GT 210 31 Watts
Difference: 6 Watts (24%)

Memory Bandwidth

Both cards have the exact same bandwidth, so theoretically they should perform exactly the same. (explain)

Texel Rate

The Radeon HD 4550 512MB should be a little bit (more or less 2%) more effective at anisotropic filtering than the GeForce GT 210. (explain)

Radeon HD 4550 512MB 4800 Mtexels/sec
GeForce GT 210 4712 Mtexels/sec
Difference: 88 (2%)

Pixel Rate

The Radeon HD 4550 512MB should be just a bit (more or less 2%) better at FSAA than the GeForce GT 210, and able to handle higher screen resolutions more effectively. (explain)

Radeon HD 4550 512MB 2400 Mpixels/sec
GeForce GT 210 2356 Mpixels/sec
Difference: 44 (2%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GT 210

Amazon.com

Radeon HD 4550 512MB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GT 210 Radeon HD 4550 512MB
Manufacturer nVidia AMD
Year October 2009 Sep 30, 2008
Code Name GT218 RV710
Fab Process 40 nm 55 nm
Bus PCIe 2.0 PCIe 2.0 x16
Memory 512 MB 512 MB
Core Speed 589 MHz 600 MHz
Shader Speed 1402 MHz (N/A) MHz
Memory Speed 1600 MHz 1600 MHz
Unified Shaders 16 80(16x5)
Texture Mapping Units 8 8
Render Output Units 4 4
Bus Type DDR3 GDDR3
Bus Width 64-bit 64-bit
DirectX Version DirectX 10.1 DirectX 10.1
OpenGL Version OpenGL 3.2 OpenGL 3.0
Power (Max TDP) 31 watts 25 watts
Shader Model 4.1 4.1
Bandwidth 12800 MB/sec 12800 MB/sec
Texel Rate 4712 Mtexels/sec 4800 Mtexels/sec
Pixel Rate 2356 Mpixels/sec 2400 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of data (measured in megabytes per second) that can be moved across the external memory interface in a second. It's calculated by multiplying the interface width by its memory clock speed. In the case of DDR type RAM, the result should be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The better the card's memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are applied per second. This is worked out by multiplying the total texture units of the card by the core speed of the chip. The higher this number, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in one second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics card could possibly write to its local memory in a second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the number of ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel rate is also dependant on quite a few other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing