Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTS 450 vs GeForce GTX 460

Intro

The GeForce GTS 450 makes use of a 40 nm design. nVidia has set the core frequency at 783 MHz. The GDDR5 RAM works at a speed of 902 MHz on this particular card. It features 192 SPUs along with 32 TAUs and 16 Rasterization Operator Units.

Compare those specs to the GeForce GTX 460, which comes with core clock speeds of 675 MHz on the GPU, and 900 MHz on the 768 MB of GDDR5 memory. It features 336 SPUs as well as 56 TAUs and 24 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTS 450 106 Watts
GeForce GTX 460 150 Watts
Difference: 44 Watts (42%)

Memory Bandwidth

Theoretically speaking, the GeForce GTX 460 should perform a lot faster than the GeForce GTS 450 overall. (explain)

GeForce GTX 460 86400 MB/sec
GeForce GTS 450 57728 MB/sec
Difference: 28672 (50%)

Texel Rate

The GeForce GTX 460 should be quite a bit (about 51%) more effective at texture filtering than the GeForce GTS 450. (explain)

GeForce GTX 460 37800 Mtexels/sec
GeForce GTS 450 25056 Mtexels/sec
Difference: 12744 (51%)

Pixel Rate

The GeForce GTX 460 is much (approximately 29%) faster with regards to AA than the GeForce GTS 450, and also will be able to handle higher screen resolutions better. (explain)

GeForce GTX 460 16200 Mpixels/sec
GeForce GTS 450 12528 Mpixels/sec
Difference: 3672 (29%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTS 450

Amazon.com

GeForce GTX 460

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTS 450 GeForce GTX 460
Manufacturer nVidia nVidia
Year September 2010 July 2010
Code Name GF106 GF104
Fab Process 40 nm 40 nm
Bus PCIe x16 PCIe x16
Memory 512 MB 768 MB
Core Speed 783 MHz 675 MHz
Shader Speed 1566 MHz 1350 MHz
Memory Speed 902 MHz (3608 MHz effective) 900 MHz (3600 MHz effective)
Unified Shaders 192 336
Texture Mapping Units 32 56
Render Output Units 16 24
Bus Type GDDR5 GDDR5
Bus Width 128-bit 192-bit
DirectX Version DirectX 11 DirectX 11
OpenGL Version OpenGL 4.1 OpenGL 4.1
Power (Max TDP) 106 watts 150 watts
Shader Model 5.0 5.0
Bandwidth 57728 MB/sec 86400 MB/sec
Texel Rate 25056 Mtexels/sec 37800 Mtexels/sec
Pixel Rate 12528 Mpixels/sec 16200 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the largest amount of data (counted in megabytes per second) that can be transported over the external memory interface in a second. It is worked out by multiplying the card's bus width by the speed of its memory. If the card has DDR memory, it must be multiplied by 2 once again. If it uses DDR5, multiply by 4 instead. The better the card's memory bandwidth, the better the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied per second. This figure is calculated by multiplying the total number of texture units of the card by the core clock speed of the chip. The higher the texel rate, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the maximum number of pixels the video card can possibly write to its local memory in one second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of colour ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel rate is also dependant on quite a few other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree