Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTS 450 vs GeForce GTX 460

Intro

The GeForce GTS 450 has core clock speeds of 783 MHz on the GPU, and 902 MHz on the 512 MB of GDDR5 memory. It features 192 SPUs as well as 32 TAUs and 16 ROPs.

Compare all of that to the GeForce GTX 460, which features a clock speed of 675 MHz and a GDDR5 memory frequency of 900 MHz. It also makes use of a 192-bit memory bus, and uses a 40 nm design. It is comprised of 336 SPUs, 56 Texture Address Units, and 24 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTS 450 106 Watts
GeForce GTX 460 150 Watts
Difference: 44 Watts (42%)

Memory Bandwidth

Theoretically speaking, the GeForce GTX 460 should be much faster than the GeForce GTS 450 overall. (explain)

GeForce GTX 460 86400 MB/sec
GeForce GTS 450 57728 MB/sec
Difference: 28672 (50%)

Texel Rate

The GeForce GTX 460 is much (more or less 51%) more effective at texture filtering than the GeForce GTS 450. (explain)

GeForce GTX 460 37800 Mtexels/sec
GeForce GTS 450 25056 Mtexels/sec
Difference: 12744 (51%)

Pixel Rate

If using a high screen resolution is important to you, then the GeForce GTX 460 is the winner, and very much so. (explain)

GeForce GTX 460 16200 Mpixels/sec
GeForce GTS 450 12528 Mpixels/sec
Difference: 3672 (29%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTS 450

Amazon.com

GeForce GTX 460

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTS 450 GeForce GTX 460
Manufacturer nVidia nVidia
Year September 2010 July 2010
Code Name GF106 GF104
Fab Process 40 nm 40 nm
Bus PCIe x16 PCIe x16
Memory 512 MB 768 MB
Core Speed 783 MHz 675 MHz
Shader Speed 1566 MHz 1350 MHz
Memory Speed 902 MHz (3608 MHz effective) 900 MHz (3600 MHz effective)
Unified Shaders 192 336
Texture Mapping Units 32 56
Render Output Units 16 24
Bus Type GDDR5 GDDR5
Bus Width 128-bit 192-bit
DirectX Version DirectX 11 DirectX 11
OpenGL Version OpenGL 4.1 OpenGL 4.1
Power (Max TDP) 106 watts 150 watts
Shader Model 5.0 5.0
Bandwidth 57728 MB/sec 86400 MB/sec
Texel Rate 25056 Mtexels/sec 37800 Mtexels/sec
Pixel Rate 12528 Mpixels/sec 16200 Mpixels/sec

Memory Bandwidth: Bandwidth is the max amount of data (counted in megabytes per second) that can be moved past the external memory interface within a second. It's calculated by multiplying the interface width by the speed of its memory. If it uses DDR type memory, it should be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The higher the bandwidth is, the faster the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be applied per second. This is calculated by multiplying the total texture units of the card by the core speed of the chip. The better this number, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics card can possibly record to its local memory in a second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the number of Render Output Units by the the card's clock speed. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate also depends on lots of other factors, most notably the memory bandwidth - the lower the bandwidth is, the lower the ability to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing