Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTS 450 vs GeForce GTX 460

Intro

The GeForce GTS 450 has a GPU core clock speed of 783 MHz, and the 512 MB of GDDR5 memory runs at 902 MHz through a 128-bit bus. It also is comprised of 192 Stream Processors, 32 TAUs, and 16 ROPs.

Compare all that to the GeForce GTX 460, which comes with GPU clock speed of 675 MHz, and 768 MB of GDDR5 memory set to run at 900 MHz through a 192-bit bus. It also is made up of 336 SPUs, 56 TAUs, and 24 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTS 450 106 Watts
GeForce GTX 460 150 Watts
Difference: 44 Watts (42%)

Memory Bandwidth

As far as performance goes, the GeForce GTX 460 should theoretically be a lot superior to the GeForce GTS 450 in general. (explain)

GeForce GTX 460 86400 MB/sec
GeForce GTS 450 57728 MB/sec
Difference: 28672 (50%)

Texel Rate

The GeForce GTX 460 should be a lot (about 51%) better at AF than the GeForce GTS 450. (explain)

GeForce GTX 460 37800 Mtexels/sec
GeForce GTS 450 25056 Mtexels/sec
Difference: 12744 (51%)

Pixel Rate

If running with a high resolution is important to you, then the GeForce GTX 460 is the winner, by far. (explain)

GeForce GTX 460 16200 Mpixels/sec
GeForce GTS 450 12528 Mpixels/sec
Difference: 3672 (29%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTS 450

Amazon.com

GeForce GTX 460

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTS 450 GeForce GTX 460
Manufacturer nVidia nVidia
Year September 2010 July 2010
Code Name GF106 GF104
Memory 512 MB 768 MB
Core Speed 783 MHz 675 MHz
Memory Speed 3608 MHz 3600 MHz
Power (Max TDP) 106 watts 150 watts
Bandwidth 57728 MB/sec 86400 MB/sec
Texel Rate 25056 Mtexels/sec 37800 Mtexels/sec
Pixel Rate 12528 Mpixels/sec 16200 Mpixels/sec
Unified Shaders 192 336
Texture Mapping Units 32 56
Render Output Units 16 24
Bus Type GDDR5 GDDR5
Bus Width 128-bit 192-bit
Fab Process 40 nm 40 nm
Transistors 1170 million 1950 million
Bus PCIe x16 PCIe x16
DirectX Version DirectX 11 DirectX 11
OpenGL Version OpenGL 4.1 OpenGL 4.1

Memory Bandwidth: Bandwidth is the maximum amount of data (in units of MB per second) that can be moved over the external memory interface in one second. It is calculated by multiplying the interface width by its memory speed. In the case of DDR type RAM, it should be multiplied by 2 again. If DDR5, multiply by 4 instead. The higher the bandwidth is, the faster the card will be in general. It especially helps with AA, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be applied per second. This is worked out by multiplying the total texture units of the card by the core clock speed of the chip. The higher the texel rate, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the maximum amount of pixels the graphics card can possibly record to the local memory in a second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the amount of ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate is also dependant on quite a few other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]