Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTS 450 vs GeForce GTX 460

Intro

The GeForce GTS 450 has a GPU core clock speed of 783 MHz, and the 512 MB of GDDR5 memory runs at 902 MHz through a 128-bit bus. It also is made up of 192 SPUs, 32 TAUs, and 16 Raster Operation Units.

Compare that to the GeForce GTX 460, which has GPU clock speed of 675 MHz, and 768 MB of GDDR5 memory running at 900 MHz through a 192-bit bus. It also is made up of 336 Stream Processors, 56 TAUs, and 24 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTS 450 106 Watts
GeForce GTX 460 150 Watts
Difference: 44 Watts (42%)

Memory Bandwidth

As far as performance goes, the GeForce GTX 460 should theoretically be quite a bit better than the GeForce GTS 450 overall. (explain)

GeForce GTX 460 86400 MB/sec
GeForce GTS 450 57728 MB/sec
Difference: 28672 (50%)

Texel Rate

The GeForce GTX 460 should be quite a bit (about 51%) faster with regards to AF than the GeForce GTS 450. (explain)

GeForce GTX 460 37800 Mtexels/sec
GeForce GTS 450 25056 Mtexels/sec
Difference: 12744 (51%)

Pixel Rate

If running with high levels of AA is important to you, then the GeForce GTX 460 is a better choice, and very much so. (explain)

GeForce GTX 460 16200 Mpixels/sec
GeForce GTS 450 12528 Mpixels/sec
Difference: 3672 (29%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTS 450

Amazon.com

GeForce GTX 460

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTS 450 GeForce GTX 460
Manufacturer nVidia nVidia
Year September 2010 July 2010
Code Name GF106 GF104
Fab Process 40 nm 40 nm
Bus PCIe x16 PCIe x16
Memory 512 MB 768 MB
Core Speed 783 MHz 675 MHz
Shader Speed 1566 MHz 1350 MHz
Memory Speed 902 MHz (3608 MHz effective) 900 MHz (3600 MHz effective)
Unified Shaders 192 336
Texture Mapping Units 32 56
Render Output Units 16 24
Bus Type GDDR5 GDDR5
Bus Width 128-bit 192-bit
DirectX Version DirectX 11 DirectX 11
OpenGL Version OpenGL 4.1 OpenGL 4.1
Power (Max TDP) 106 watts 150 watts
Shader Model 5.0 5.0
Bandwidth 57728 MB/sec 86400 MB/sec
Texel Rate 25056 Mtexels/sec 37800 Mtexels/sec
Pixel Rate 12528 Mpixels/sec 16200 Mpixels/sec

Memory Bandwidth: Bandwidth is the maximum amount of information (in units of MB per second) that can be moved over the external memory interface in a second. It's calculated by multiplying the interface width by the speed of its memory. In the case of DDR type memory, it must be multiplied by 2 once again. If DDR5, multiply by 4 instead. The better the card's memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be applied per second. This is worked out by multiplying the total number of texture units by the core speed of the chip. The higher the texel rate, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the maximum number of pixels the graphics card could possibly record to its local memory per second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the amount of ROPs by the clock speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate is also dependant on many other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing