Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce 9500 GT DDR2 vs GeForce GT 220 GDDR3

Intro

The GeForce 9500 GT DDR2 features a GPU core clock speed of 550 MHz, and the 256 MB of DDR2 memory runs at 500 MHz through a 128-bit bus. It also is made up of 32 Stream Processors, 16 TAUs, and 8 Raster Operation Units.

Compare all that to the GeForce GT 220 GDDR3, which makes use of a 40 nm design. nVidia has set the core frequency at 625 MHz. The GDDR3 RAM is set to run at a frequency of 1012 MHz on this specific card. It features 48 SPUs along with 16 Texture Address Units and 8 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 9500 GT DDR2 50 Watts
GeForce GT 220 GDDR3 58 Watts
Difference: 8 Watts (16%)

Memory Bandwidth

The GeForce GT 220 GDDR3 should theoretically be quite a bit faster than the GeForce 9500 GT DDR2 overall. (explain)

GeForce GT 220 GDDR3 32384 MB/sec
GeForce 9500 GT DDR2 16000 MB/sec
Difference: 16384 (102%)

Texel Rate

The GeForce GT 220 GDDR3 should be a small bit (about 14%) better at AF than the GeForce 9500 GT DDR2. (explain)

GeForce GT 220 GDDR3 10000 Mtexels/sec
GeForce 9500 GT DDR2 8800 Mtexels/sec
Difference: 1200 (14%)

Pixel Rate

If using a high screen resolution is important to you, then the GeForce GT 220 GDDR3 is the winner, but it probably won't make a huge difference. (explain)

GeForce GT 220 GDDR3 5000 Mpixels/sec
GeForce 9500 GT DDR2 4400 Mpixels/sec
Difference: 600 (14%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce 9500 GT DDR2

GeForce GT 220 GDDR3

Specifications

Display Specifications

Hide Specifications

Model GeForce 9500 GT DDR2 GeForce GT 220 GDDR3
Manufacturer nVidia nVidia
Year July 2008 October 2009
Code Name G96a GT216
Memory 256 MB 512 MB
Core Speed 550 MHz 625 MHz
Memory Speed 1000 MHz 2024 MHz
Power (Max TDP) 50 watts 58 watts
Bandwidth 16000 MB/sec 32384 MB/sec
Texel Rate 8800 Mtexels/sec 10000 Mtexels/sec
Pixel Rate 4400 Mpixels/sec 5000 Mpixels/sec
Unified Shaders 32 48
Texture Mapping Units 16 16
Render Output Units 8 8
Bus Type DDR2 GDDR3
Bus Width 128-bit 128-bit
Fab Process 65 nm 40 nm
Transistors 314 million 486 million
Bus PCIe x16 2.0, PCI PCIe 2.0
DirectX Version DirectX 10 DirectX 10.1
OpenGL Version OpenGL 3.0 OpenGL 3.2

Memory Bandwidth: Memory bandwidth is the maximum amount of data (counted in megabytes per second) that can be transferred past the external memory interface in a second. The number is calculated by multiplying the interface width by its memory clock speed. If it uses DDR type memory, it must be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The higher the card's memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be applied in one second. This figure is calculated by multiplying the total texture units by the core clock speed of the chip. The higher this number, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics card can possibly write to its local memory in a second - measured in millions of pixels per second. The number is worked out by multiplying the number of Render Output Units by the clock speed of the card. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate also depends on lots of other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the potential to reach the max fill rate.

GeForce 9500 GT DDR2

GeForce GT 220 GDDR3

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *


*

WordPress Anti-Spam by WP-SpamShield


[X]
[X]