Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce 9500 GT DDR2 vs GeForce GT 220 GDDR3

Intro

The GeForce 9500 GT DDR2 comes with a core clock frequency of 550 MHz and a DDR2 memory speed of 500 MHz. It also features a 128-bit memory bus, and makes use of a 65 nm design. It features 32 SPUs, 16 TAUs, and 8 Raster Operation Units.

Compare those specifications to the GeForce GT 220 GDDR3, which comes with a core clock frequency of 625 MHz and a GDDR3 memory frequency of 1012 MHz. It also uses a 128-bit bus, and uses a 40 nm design. It is made up of 48 SPUs, 16 TAUs, and 8 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 9500 GT DDR2 50 Watts
GeForce GT 220 GDDR3 58 Watts
Difference: 8 Watts (16%)

Memory Bandwidth

Theoretically, the GeForce GT 220 GDDR3 should be much faster than the GeForce 9500 GT DDR2 overall. (explain)

GeForce GT 220 GDDR3 32384 MB/sec
GeForce 9500 GT DDR2 16000 MB/sec
Difference: 16384 (102%)

Texel Rate

The GeForce GT 220 GDDR3 is a small bit (more or less 14%) better at AF than the GeForce 9500 GT DDR2. (explain)

GeForce GT 220 GDDR3 10000 Mtexels/sec
GeForce 9500 GT DDR2 8800 Mtexels/sec
Difference: 1200 (14%)

Pixel Rate

The GeForce GT 220 GDDR3 will be just a bit (approximately 14%) more effective at full screen anti-aliasing than the GeForce 9500 GT DDR2, and also will be capable of handling higher screen resolutions without losing too much performance. (explain)

GeForce GT 220 GDDR3 5000 Mpixels/sec
GeForce 9500 GT DDR2 4400 Mpixels/sec
Difference: 600 (14%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 9500 GT DDR2

Amazon.com

GeForce GT 220 GDDR3

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 9500 GT DDR2 GeForce GT 220 GDDR3
Manufacturer nVidia nVidia
Year July 2008 October 2009
Code Name G96a GT216
Memory 256 MB 512 MB
Core Speed 550 MHz 625 MHz
Memory Speed 1000 MHz 2024 MHz
Power (Max TDP) 50 watts 58 watts
Bandwidth 16000 MB/sec 32384 MB/sec
Texel Rate 8800 Mtexels/sec 10000 Mtexels/sec
Pixel Rate 4400 Mpixels/sec 5000 Mpixels/sec
Unified Shaders 32 48
Texture Mapping Units 16 16
Render Output Units 8 8
Bus Type DDR2 GDDR3
Bus Width 128-bit 128-bit
Fab Process 65 nm 40 nm
Transistors 314 million 486 million
Bus PCIe x16 2.0, PCI PCIe 2.0
DirectX Version DirectX 10 DirectX 10.1
OpenGL Version OpenGL 3.0 OpenGL 3.2

Memory Bandwidth: Memory bandwidth is the max amount of information (in units of megabytes per second) that can be transported over the external memory interface in a second. It is calculated by multiplying the card's interface width by its memory clock speed. In the case of DDR RAM, the result should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The higher the memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be processed in one second. This is calculated by multiplying the total texture units of the card by the core clock speed of the chip. The better the texel rate, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the maximum number of pixels the video card could possibly write to the local memory in a second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the number of Render Output Units by the the core clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate is also dependant on quite a few other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]