Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GT 220 GDDR3 vs GeForce GTS 450 1GB

Intro

The GeForce GT 220 GDDR3 features core clock speeds of 625 MHz on the GPU, and 1012 MHz on the 512 MB of GDDR3 RAM. It features 48 SPUs along with 16 TAUs and 8 ROPs.

Compare those specifications to the GeForce GTS 450 1GB, which comes with a clock speed of 783 MHz and a GDDR5 memory frequency of 902 MHz. It also uses a 128-bit bus, and uses a 40 nm design. It is comprised of 192 SPUs, 32 TAUs, and 16 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 220 GDDR3 58 Watts
GeForce GTS 450 1GB 106 Watts
Difference: 48 Watts (83%)

Memory Bandwidth

The GeForce GTS 450 1GB, in theory, should be much faster than the GeForce GT 220 GDDR3 in general. (explain)

GeForce GTS 450 1GB 57728 MB/sec
GeForce GT 220 GDDR3 32384 MB/sec
Difference: 25344 (78%)

Texel Rate

The GeForce GTS 450 1GB should be quite a bit (about 151%) more effective at anisotropic filtering than the GeForce GT 220 GDDR3. (explain)

GeForce GTS 450 1GB 25056 Mtexels/sec
GeForce GT 220 GDDR3 10000 Mtexels/sec
Difference: 15056 (151%)

Pixel Rate

The GeForce GTS 450 1GB is much (approximately 151%) better at anti-aliasing than the GeForce GT 220 GDDR3, and should be able to handle higher resolutions more effectively. (explain)

GeForce GTS 450 1GB 12528 Mpixels/sec
GeForce GT 220 GDDR3 5000 Mpixels/sec
Difference: 7528 (151%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GT 220 GDDR3

Amazon.com

GeForce GTS 450 1GB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GT 220 GDDR3 GeForce GTS 450 1GB
Manufacturer nVidia nVidia
Year October 2009 September 2010
Code Name GT216 GF106
Fab Process 40 nm 40 nm
Bus PCIe 2.0 PCIe x16
Memory 512 MB 1024 MB
Core Speed 625 MHz 783 MHz
Shader Speed 1360 MHz 1566 MHz
Memory Speed 1012 MHz (2024 MHz effective) 902 MHz (3608 MHz effective)
Unified Shaders 48 192
Texture Mapping Units 16 32
Render Output Units 8 16
Bus Type GDDR3 GDDR5
Bus Width 128-bit 128-bit
DirectX Version DirectX 10.1 DirectX 11
OpenGL Version OpenGL 3.2 OpenGL 4.1
Power (Max TDP) 58 watts 106 watts
Shader Model 4.1 5.0
Bandwidth 32384 MB/sec 57728 MB/sec
Texel Rate 10000 Mtexels/sec 25056 Mtexels/sec
Pixel Rate 5000 Mpixels/sec 12528 Mpixels/sec

Memory Bandwidth: Bandwidth is the max amount of data (in units of MB per second) that can be transferred across the external memory interface in one second. The number is calculated by multiplying the interface width by its memory speed. If it uses DDR type RAM, the result should be multiplied by 2 once again. If it uses DDR5, multiply by 4 instead. The better the memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be applied in one second. This is worked out by multiplying the total texture units of the card by the core clock speed of the chip. The better the texel rate, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in one second.

Pixel Rate: Pixel rate is the most pixels that the graphics chip can possibly record to its local memory in a second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the number of Render Output Units by the the core speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate also depends on lots of other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree