Compare any two graphics cards:
VS

GeForce GT 220 GDDR3 vs GeForce GTS 450 1GB

Intro

The GeForce GT 220 GDDR3 comes with a GPU core clock speed of 625 MHz, and the 512 MB of GDDR3 memory is set to run at 1012 MHz through a 128-bit bus. It also features 48 SPUs, 16 Texture Address Units, and 8 ROPs.

Compare all of that to the GeForce GTS 450 1GB, which comes with a clock frequency of 783 MHz and a GDDR5 memory speed of 902 MHz. It also features a 128-bit memory bus, and uses a 40 nm design. It features 192 SPUs, 32 TAUs, and 16 Raster Operation Units.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 220 GDDR3 58 Watts
GeForce GTS 450 1GB 106 Watts
Difference: 48 Watts (83%)

Memory Bandwidth

Performance-wise, the GeForce GTS 450 1GB should theoretically be quite a bit better than the GeForce GT 220 GDDR3 in general. (explain)

GeForce GTS 450 1GB 57728 MB/sec
GeForce GT 220 GDDR3 32384 MB/sec
Difference: 25344 (78%)

Texel Rate

The GeForce GTS 450 1GB is much (more or less 151%) better at texture filtering than the GeForce GT 220 GDDR3. (explain)

GeForce GTS 450 1GB 25056 Mtexels/sec
GeForce GT 220 GDDR3 10000 Mtexels/sec
Difference: 15056 (151%)

Pixel Rate

The GeForce GTS 450 1GB will be a lot (more or less 151%) better at FSAA than the GeForce GT 220 GDDR3, and able to handle higher screen resolutions while still performing well. (explain)

GeForce GTS 450 1GB 12528 Mpixels/sec
GeForce GT 220 GDDR3 5000 Mpixels/sec
Difference: 7528 (151%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GT 220 GDDR3

Amazon.com

GeForce GTS 450 1GB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GT 220 GDDR3 GeForce GTS 450 1GB
Manufacturer nVidia nVidia
Year October 2009 September 2010
Code Name GT216 GF106
Fab Process 40 nm 40 nm
Bus PCIe 2.0 PCIe x16
Memory 512 MB 1024 MB
Core Speed 625 MHz 783 MHz
Shader Speed 1360 MHz 1566 MHz
Memory Speed 2024 MHz 3608 MHz
Unified Shaders 48 192
Texture Mapping Units 16 32
Render Output Units 8 16
Bus Type GDDR3 GDDR5
Bus Width 128-bit 128-bit
DirectX Version DirectX 10.1 DirectX 11
OpenGL Version OpenGL 3.2 OpenGL 4.1
Power (Max TDP) 58 watts 106 watts
Shader Model 4.1 5.0
Bandwidth 32384 MB/sec 57728 MB/sec
Texel Rate 10000 Mtexels/sec 25056 Mtexels/sec
Pixel Rate 5000 Mpixels/sec 12528 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of information (measured in MB per second) that can be moved across the external memory interface within a second. The number is calculated by multiplying the bus width by the speed of its memory. If the card has DDR type memory, it should be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The better the card's memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are processed in one second. This figure is worked out by multiplying the total number of texture units of the card by the core clock speed of the chip. The better the texel rate, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics chip could possibly write to the local memory per second - measured in millions of pixels per second. The number is calculated by multiplying the amount of colour ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel output rate is also dependant on many other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the ability to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing