Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GT 440 3GB vs Radeon HD 5570

Intro

The GeForce GT 440 3GB features clock speeds of 594 MHz on the GPU, and 900 MHz on the 3072 MB of GDDR3 memory. It features 144 SPUs as well as 24 TAUs and 24 ROPs.

Compare those specifications to the Radeon HD 5570, which uses a 40 nm design. AMD has set the core speed at 650 MHz. The DDR3 RAM runs at a speed of 900 MHz on this particular card. It features 400(80x5) SPUs along with 20 TAUs and 8 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 5570 43 Watts
GeForce GT 440 3GB 56 Watts
Difference: 13 Watts (30%)

Memory Bandwidth

In theory, the GeForce GT 440 3GB should perform quite a bit faster than the Radeon HD 5570 in general. (explain)

GeForce GT 440 3GB 43200 MB/sec
Radeon HD 5570 28800 MB/sec
Difference: 14400 (50%)

Texel Rate

The GeForce GT 440 3GB will be a small bit (more or less 10%) more effective at texture filtering than the Radeon HD 5570. (explain)

GeForce GT 440 3GB 14256 Mtexels/sec
Radeon HD 5570 13000 Mtexels/sec
Difference: 1256 (10%)

Pixel Rate

If using high levels of AA is important to you, then the GeForce GT 440 3GB is a better choice, by a large margin. (explain)

GeForce GT 440 3GB 14256 Mpixels/sec
Radeon HD 5570 5200 Mpixels/sec
Difference: 9056 (174%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GT 440 3GB

Amazon.com

Radeon HD 5570

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GT 440 3GB Radeon HD 5570
Manufacturer nVidia AMD
Year October 2010 February 9, 2010
Code Name GF106 Redwood PRO
Fab Process 40 nm 40 nm
Bus PCIe x16 PCIe 2.1 x16
Memory 3072 MB 512 MB
Core Speed 594 MHz 650 MHz
Shader Speed 1189 MHz (N/A) MHz
Memory Speed 900 MHz (1800 MHz effective) 900 MHz (1800 MHz effective)
Unified Shaders 144 400(80x5)
Texture Mapping Units 24 20
Render Output Units 24 8
Bus Type GDDR3 DDR3
Bus Width 192-bit 128-bit
DirectX Version DirectX 11 DirectX 11
OpenGL Version OpenGL 4.1 OpenGL 3.2
Power (Max TDP) 56 watts 43 watts
Shader Model 5.0 5.0
Bandwidth 43200 MB/sec 28800 MB/sec
Texel Rate 14256 Mtexels/sec 13000 Mtexels/sec
Pixel Rate 14256 Mpixels/sec 5200 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of data (counted in megabytes per second) that can be transferred past the external memory interface in a second. It's worked out by multiplying the interface width by its memory clock speed. If it uses DDR type memory, it should be multiplied by 2 once again. If DDR5, multiply by ANOTHER 2x. The better the card's memory bandwidth, the faster the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be applied per second. This figure is worked out by multiplying the total texture units by the core speed of the chip. The better the texel rate, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the most pixels the video card could possibly record to its local memory per second - measured in millions of pixels per second. The figure is worked out by multiplying the amount of Raster Operations Pipelines by the the core clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate also depends on many other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the ability to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree