Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce 8800 GT 1GB vs GeForce GT 430 1GB

Intro

The GeForce 8800 GT 1GB makes use of a 65 nm design. nVidia has set the core speed at 600 MHz. The GDDR3 memory runs at a speed of 900 MHz on this particular card. It features 112 SPUs along with 56 Texture Address Units and 16 Rasterization Operator Units.

Compare that to the GeForce GT 430 1GB, which comes with core clock speeds of 700 MHz on the GPU, and 900 MHz on the 1024 MB of GDDR3 RAM. It features 96 SPUs along with 16 TAUs and 4 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 430 1GB 60 Watts
GeForce 8800 GT 1GB 105 Watts
Difference: 45 Watts (75%)

Memory Bandwidth

The GeForce 8800 GT 1GB should theoretically be quite a bit faster than the GeForce GT 430 1GB overall. (explain)

GeForce 8800 GT 1GB 57600 MB/sec
GeForce GT 430 1GB 28800 MB/sec
Difference: 28800 (100%)

Texel Rate

The GeForce 8800 GT 1GB is a lot (about 200%) faster with regards to texture filtering than the GeForce GT 430 1GB. (explain)

GeForce 8800 GT 1GB 33600 Mtexels/sec
GeForce GT 430 1GB 11200 Mtexels/sec
Difference: 22400 (200%)

Pixel Rate

The GeForce 8800 GT 1GB should be a lot (more or less 243%) better at full screen anti-aliasing than the GeForce GT 430 1GB, and should be capable of handling higher resolutions without slowing down too much. (explain)

GeForce 8800 GT 1GB 9600 Mpixels/sec
GeForce GT 430 1GB 2800 Mpixels/sec
Difference: 6800 (243%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 8800 GT 1GB

Amazon.com

GeForce GT 430 1GB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 8800 GT 1GB GeForce GT 430 1GB
Manufacturer nVidia nVidia
Year Dec 2007 October 2010
Code Name G92 GF108
Memory 1024 MB 1024 MB
Core Speed 600 MHz 700 MHz
Memory Speed 1800 MHz 1800 MHz
Power (Max TDP) 105 watts 60 watts
Bandwidth 57600 MB/sec 28800 MB/sec
Texel Rate 33600 Mtexels/sec 11200 Mtexels/sec
Pixel Rate 9600 Mpixels/sec 2800 Mpixels/sec
Unified Shaders 112 96
Texture Mapping Units 56 16
Render Output Units 16 4
Bus Type GDDR3 GDDR3
Bus Width 256-bit 128-bit
Fab Process 65 nm 40 nm
Transistors 754 million 585 million
Bus PCIe x16 2.0 PCIe x16
DirectX Version DirectX 10 DirectX 11
OpenGL Version OpenGL 3.0 OpenGL 4.1

Memory Bandwidth: Memory bandwidth is the max amount of information (counted in megabytes per second) that can be transferred across the external memory interface in a second. The number is worked out by multiplying the card's interface width by its memory clock speed. If the card has DDR memory, it must be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The higher the memory bandwidth, the better the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are applied per second. This number is calculated by multiplying the total amount of texture units of the card by the core speed of the chip. The better this number, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics card could possibly record to the local memory per second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of Raster Operations Pipelines by the the core clock speed. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate also depends on many other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the ability to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]