Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce 9600 GT 1GB vs GeForce GT 430 1GB

Intro

The GeForce 9600 GT 1GB has core clock speeds of 650 MHz on the GPU, and 900 MHz on the 1024 MB of GDDR3 RAM. It features 64 SPUs along with 32 TAUs and 16 Rasterization Operator Units.

Compare those specs to the GeForce GT 430 1GB, which makes use of a 40 nm design. nVidia has set the core speed at 700 MHz. The GDDR3 memory runs at a speed of 900 MHz on this particular model. It features 96 SPUs along with 16 TAUs and 4 Rasterization Operator Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 430 1GB 60 Watts
GeForce 9600 GT 1GB 95 Watts
Difference: 35 Watts (58%)

Memory Bandwidth

In theory, the GeForce 9600 GT 1GB should be 100% quicker than the GeForce GT 430 1GB in general, due to its greater data rate. (explain)

GeForce 9600 GT 1GB 57600 MB/sec
GeForce GT 430 1GB 28800 MB/sec
Difference: 28800 (100%)

Texel Rate

The GeForce 9600 GT 1GB is a lot (about 86%) more effective at texture filtering than the GeForce GT 430 1GB. (explain)

GeForce 9600 GT 1GB 20800 Mtexels/sec
GeForce GT 430 1GB 11200 Mtexels/sec
Difference: 9600 (86%)

Pixel Rate

If running with a high screen resolution is important to you, then the GeForce 9600 GT 1GB is superior to the GeForce GT 430 1GB, by a large margin. (explain)

GeForce 9600 GT 1GB 10400 Mpixels/sec
GeForce GT 430 1GB 2800 Mpixels/sec
Difference: 7600 (271%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 9600 GT 1GB

Amazon.com

GeForce GT 430 1GB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 9600 GT 1GB GeForce GT 430 1GB
Manufacturer nVidia nVidia
Year Feb 2008 October 2010
Code Name G94a/b GF108
Memory 1024 MB 1024 MB
Core Speed 650 MHz 700 MHz
Memory Speed 1800 MHz 1800 MHz
Power (Max TDP) 95 watts 60 watts
Bandwidth 57600 MB/sec 28800 MB/sec
Texel Rate 20800 Mtexels/sec 11200 Mtexels/sec
Pixel Rate 10400 Mpixels/sec 2800 Mpixels/sec
Unified Shaders 64 96
Texture Mapping Units 32 16
Render Output Units 16 4
Bus Type GDDR3 GDDR3
Bus Width 256-bit 128-bit
Fab Process 65/55 nm 40 nm
Transistors 505 million 585 million
Bus PCIe x16 2.0 PCIe x16
DirectX Version DirectX 10 DirectX 11
OpenGL Version OpenGL 3.0 OpenGL 4.1

Memory Bandwidth: Memory bandwidth is the largest amount of data (in units of MB per second) that can be moved past the external memory interface in a second. The number is calculated by multiplying the card's bus width by the speed of its memory. If the card has DDR memory, it must be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The better the bandwidth is, the faster the card will be in general. It especially helps with AA, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied in one second. This figure is calculated by multiplying the total amount of texture units of the card by the core speed of the chip. The better the texel rate, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics chip could possibly record to its local memory per second - measured in millions of pixels per second. The number is worked out by multiplying the number of Render Output Units by the the core speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate is also dependant on many other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]