Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 9800 GT 1GB vs GeForce GT 430 1GB

Intro

The GeForce 9800 GT 1GB makes use of a 65/55 nm design. nVidia has clocked the core frequency at 600 MHz. The GDDR3 RAM runs at a frequency of 900 MHz on this particular model. It features 112 SPUs as well as 56 Texture Address Units and 16 ROPs.

Compare all of that to the GeForce GT 430 1GB, which features a core clock speed of 700 MHz and a GDDR3 memory speed of 900 MHz. It also features a 128-bit memory bus, and uses a 40 nm design. It features 96 SPUs, 16 Texture Address Units, and 4 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 430 1GB 60 Watts
GeForce 9800 GT 1GB 105 Watts
Difference: 45 Watts (75%)

Memory Bandwidth

Theoretically speaking, the GeForce 9800 GT 1GB is 100% quicker than the GeForce GT 430 1GB in general, because of its higher data rate. (explain)

GeForce 9800 GT 1GB 57600 MB/sec
GeForce GT 430 1GB 28800 MB/sec
Difference: 28800 (100%)

Texel Rate

The GeForce 9800 GT 1GB will be much (approximately 200%) better at texture filtering than the GeForce GT 430 1GB. (explain)

GeForce 9800 GT 1GB 33600 Mtexels/sec
GeForce GT 430 1GB 11200 Mtexels/sec
Difference: 22400 (200%)

Pixel Rate

The GeForce 9800 GT 1GB is much (more or less 243%) better at full screen anti-aliasing than the GeForce GT 430 1GB, and also should be capable of handling higher screen resolutions without losing too much performance. (explain)

GeForce 9800 GT 1GB 9600 Mpixels/sec
GeForce GT 430 1GB 2800 Mpixels/sec
Difference: 6800 (243%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce 9800 GT 1GB

Amazon.com

GeForce GT 430 1GB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce 9800 GT 1GB GeForce GT 430 1GB
Manufacturer nVidia nVidia
Year July 2008 October 2010
Code Name G92a/b GF108
Fab Process 65/55 nm 40 nm
Bus PCIe x16 2.0 PCIe x16
Memory 1024 MB 1024 MB
Core Speed 600 MHz 700 MHz
Shader Speed 1500 MHz 1400 MHz
Memory Speed 900 MHz (1800 MHz effective) 900 MHz (1800 MHz effective)
Unified Shaders 112 96
Texture Mapping Units 56 16
Render Output Units 16 4
Bus Type GDDR3 GDDR3
Bus Width 256-bit 128-bit
DirectX Version DirectX 10 DirectX 11
OpenGL Version OpenGL 3.0 OpenGL 4.1
Power (Max TDP) 105 watts 60 watts
Shader Model 4.0 5.0
Bandwidth 57600 MB/sec 28800 MB/sec
Texel Rate 33600 Mtexels/sec 11200 Mtexels/sec
Pixel Rate 9600 Mpixels/sec 2800 Mpixels/sec

Memory Bandwidth: Bandwidth is the max amount of information (measured in megabytes per second) that can be moved over the external memory interface in a second. It's worked out by multiplying the card's bus width by its memory clock speed. If it uses DDR memory, it must be multiplied by 2 once again. If DDR5, multiply by 4 instead. The higher the card's memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied in one second. This number is worked out by multiplying the total number of texture units of the card by the core speed of the chip. The better the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the most pixels that the graphics card can possibly record to the local memory per second - measured in millions of pixels per second. The number is worked out by multiplying the amount of ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate also depends on many other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing