Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 9800 GT 1GB vs GeForce GT 430 1GB

Intro

The GeForce 9800 GT 1GB comes with a GPU core clock speed of 600 MHz, and the 1024 MB of GDDR3 RAM is set to run at 900 MHz through a 256-bit bus. It also is made up of 112 SPUs, 56 Texture Address Units, and 16 Raster Operation Units.

Compare all that to the GeForce GT 430 1GB, which has GPU clock speed of 700 MHz, and 1024 MB of GDDR3 memory running at 900 MHz through a 128-bit bus. It also is comprised of 96 SPUs, 16 Texture Address Units, and 4 ROPs.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 430 1GB 60 Watts
GeForce 9800 GT 1GB 105 Watts
Difference: 45 Watts (75%)

Memory Bandwidth

In theory, the GeForce 9800 GT 1GB should be 100% quicker than the GeForce GT 430 1GB in general, due to its greater data rate. (explain)

GeForce 9800 GT 1GB 57600 MB/sec
GeForce GT 430 1GB 28800 MB/sec
Difference: 28800 (100%)

Texel Rate

The GeForce 9800 GT 1GB is a lot (more or less 200%) faster with regards to anisotropic filtering than the GeForce GT 430 1GB. (explain)

GeForce 9800 GT 1GB 33600 Mtexels/sec
GeForce GT 430 1GB 11200 Mtexels/sec
Difference: 22400 (200%)

Pixel Rate

If running with lots of anti-aliasing is important to you, then the GeForce 9800 GT 1GB is superior to the GeForce GT 430 1GB, and very much so. (explain)

GeForce 9800 GT 1GB 9600 Mpixels/sec
GeForce GT 430 1GB 2800 Mpixels/sec
Difference: 6800 (243%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 9800 GT 1GB

Amazon.com

GeForce GT 430 1GB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 9800 GT 1GB GeForce GT 430 1GB
Manufacturer nVidia nVidia
Year July 2008 October 2010
Code Name G92a/b GF108
Fab Process 65/55 nm 40 nm
Bus PCIe x16 2.0 PCIe x16
Memory 1024 MB 1024 MB
Core Speed 600 MHz 700 MHz
Shader Speed 1500 MHz 1400 MHz
Memory Speed 900 MHz (1800 MHz effective) 900 MHz (1800 MHz effective)
Unified Shaders 112 96
Texture Mapping Units 56 16
Render Output Units 16 4
Bus Type GDDR3 GDDR3
Bus Width 256-bit 128-bit
DirectX Version DirectX 10 DirectX 11
OpenGL Version OpenGL 3.0 OpenGL 4.1
Power (Max TDP) 105 watts 60 watts
Shader Model 4.0 5.0
Bandwidth 57600 MB/sec 28800 MB/sec
Texel Rate 33600 Mtexels/sec 11200 Mtexels/sec
Pixel Rate 9600 Mpixels/sec 2800 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of data (counted in megabytes per second) that can be transferred past the external memory interface within a second. It's worked out by multiplying the bus width by its memory clock speed. If it uses DDR memory, the result should be multiplied by 2 again. If DDR5, multiply by 4 instead. The better the bandwidth is, the faster the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied in one second. This figure is worked out by multiplying the total texture units of the card by the core clock speed of the chip. The better the texel rate, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the maximum amount of pixels the video card can possibly record to its local memory in one second - measured in millions of pixels per second. The number is calculated by multiplying the amount of ROPs by the clock speed of the card. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate is also dependant on lots of other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing