Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GT 430 1GB vs Radeon HD 5830

Intro

The GeForce GT 430 1GB uses a 40 nm design. nVidia has set the core frequency at 700 MHz. The GDDR3 memory works at a frequency of 900 MHz on this specific card. It features 96 SPUs as well as 16 Texture Address Units and 4 ROPs.

Compare those specifications to the Radeon HD 5830, which makes use of a 40 nm design. AMD has clocked the core frequency at 800 MHz. The GDDR5 memory works at a frequency of 1000 MHz on this specific card. It features 1120(224x5) SPUs along with 56 Texture Address Units and 16 Rasterization Operator Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 430 1GB 60 Watts
Radeon HD 5830 175 Watts
Difference: 115 Watts (192%)

Memory Bandwidth

Performance-wise, the Radeon HD 5830 should in theory be quite a bit superior to the GeForce GT 430 1GB in general. (explain)

Radeon HD 5830 128000 MB/sec
GeForce GT 430 1GB 28800 MB/sec
Difference: 99200 (344%)

Texel Rate

The Radeon HD 5830 is a lot (more or less 300%) faster with regards to anisotropic filtering than the GeForce GT 430 1GB. (explain)

Radeon HD 5830 44800 Mtexels/sec
GeForce GT 430 1GB 11200 Mtexels/sec
Difference: 33600 (300%)

Pixel Rate

If running with lots of anti-aliasing is important to you, then the Radeon HD 5830 is superior to the GeForce GT 430 1GB, and very much so. (explain)

Radeon HD 5830 12800 Mpixels/sec
GeForce GT 430 1GB 2800 Mpixels/sec
Difference: 10000 (357%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GT 430 1GB

Amazon.com

Radeon HD 5830

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GT 430 1GB Radeon HD 5830
Manufacturer nVidia AMD
Year October 2010 February 25, 2010
Code Name GF108 Cypress LE
Memory 1024 MB 1024 MB
Core Speed 700 MHz 800 MHz
Memory Speed 1800 MHz 4000 MHz
Power (Max TDP) 60 watts 175 watts
Bandwidth 28800 MB/sec 128000 MB/sec
Texel Rate 11200 Mtexels/sec 44800 Mtexels/sec
Pixel Rate 2800 Mpixels/sec 12800 Mpixels/sec
Unified Shaders 96 1120(224x5)
Texture Mapping Units 16 56
Render Output Units 4 16
Bus Type GDDR3 GDDR5
Bus Width 128-bit 256-bit
Fab Process 40 nm 40 nm
Transistors 585 million 2154 million
Bus PCIe x16 PCIe 2.1 x16
DirectX Version DirectX 11 DirectX 11
OpenGL Version OpenGL 4.1 OpenGL 3.2

Memory Bandwidth: Memory bandwidth is the max amount of information (measured in MB per second) that can be moved across the external memory interface within a second. The number is worked out by multiplying the interface width by the speed of its memory. If the card has DDR type RAM, the result should be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The higher the memory bandwidth, the better the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are processed per second. This is worked out by multiplying the total amount of texture units by the core clock speed of the chip. The higher the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the most pixels the video card can possibly write to the local memory in a second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the amount of Raster Operations Pipelines by the the core speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate is also dependant on lots of other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]