Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GT 430 1GB vs Radeon HD 5830

Intro

The GeForce GT 430 1GB features core clock speeds of 700 MHz on the GPU, and 900 MHz on the 1024 MB of GDDR3 memory. It features 96 SPUs as well as 16 TAUs and 4 ROPs.

Compare all of that to the Radeon HD 5830, which has a clock frequency of 800 MHz and a GDDR5 memory speed of 1000 MHz. It also features a 256-bit bus, and uses a 40 nm design. It is made up of 1120(224x5) SPUs, 56 TAUs, and 16 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 430 1GB 60 Watts
Radeon HD 5830 175 Watts
Difference: 115 Watts (192%)

Memory Bandwidth

Performance-wise, the Radeon HD 5830 should theoretically be a lot better than the GeForce GT 430 1GB in general. (explain)

Radeon HD 5830 128000 MB/sec
GeForce GT 430 1GB 28800 MB/sec
Difference: 99200 (344%)

Texel Rate

The Radeon HD 5830 is a lot (about 300%) more effective at anisotropic filtering than the GeForce GT 430 1GB. (explain)

Radeon HD 5830 44800 Mtexels/sec
GeForce GT 430 1GB 11200 Mtexels/sec
Difference: 33600 (300%)

Pixel Rate

The Radeon HD 5830 will be quite a bit (more or less 357%) faster with regards to anti-aliasing than the GeForce GT 430 1GB, and able to handle higher screen resolutions without losing too much performance. (explain)

Radeon HD 5830 12800 Mpixels/sec
GeForce GT 430 1GB 2800 Mpixels/sec
Difference: 10000 (357%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GT 430 1GB

Amazon.com

Radeon HD 5830

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GT 430 1GB Radeon HD 5830
Manufacturer nVidia AMD
Year October 2010 February 25, 2010
Code Name GF108 Cypress LE
Memory 1024 MB 1024 MB
Core Speed 700 MHz 800 MHz
Memory Speed 1800 MHz 4000 MHz
Power (Max TDP) 60 watts 175 watts
Bandwidth 28800 MB/sec 128000 MB/sec
Texel Rate 11200 Mtexels/sec 44800 Mtexels/sec
Pixel Rate 2800 Mpixels/sec 12800 Mpixels/sec
Unified Shaders 96 1120(224x5)
Texture Mapping Units 16 56
Render Output Units 4 16
Bus Type GDDR3 GDDR5
Bus Width 128-bit 256-bit
Fab Process 40 nm 40 nm
Transistors 585 million 2154 million
Bus PCIe x16 PCIe 2.1 x16
DirectX Version DirectX 11 DirectX 11
OpenGL Version OpenGL 4.1 OpenGL 3.2

Memory Bandwidth: Memory bandwidth is the max amount of data (counted in megabytes per second) that can be moved over the external memory interface in a second. It's worked out by multiplying the interface width by the speed of its memory. If it uses DDR type RAM, it should be multiplied by 2 once again. If DDR5, multiply by 4 instead. The better the memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be processed in one second. This is worked out by multiplying the total amount of texture units by the core clock speed of the chip. The better the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics card can possibly write to the local memory in a second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the number of Raster Operations Pipelines by the the core clock speed. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate is also dependant on lots of other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the ability to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]