Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GT 430 1GB vs Radeon HD 5830

Intro

The GeForce GT 430 1GB comes with a core clock frequency of 700 MHz and a GDDR3 memory frequency of 900 MHz. It also uses a 128-bit bus, and makes use of a 40 nm design. It is comprised of 96 SPUs, 16 TAUs, and 4 Raster Operation Units.

Compare all that to the Radeon HD 5830, which has core speeds of 800 MHz on the GPU, and 1000 MHz on the 1024 MB of GDDR5 memory. It features 1120(224x5) SPUs along with 56 TAUs and 16 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 430 1GB 60 Watts
Radeon HD 5830 175 Watts
Difference: 115 Watts (192%)

Memory Bandwidth

As far as performance goes, the Radeon HD 5830 should theoretically be much superior to the GeForce GT 430 1GB in general. (explain)

Radeon HD 5830 128000 MB/sec
GeForce GT 430 1GB 28800 MB/sec
Difference: 99200 (344%)

Texel Rate

The Radeon HD 5830 is a lot (more or less 300%) better at AF than the GeForce GT 430 1GB. (explain)

Radeon HD 5830 44800 Mtexels/sec
GeForce GT 430 1GB 11200 Mtexels/sec
Difference: 33600 (300%)

Pixel Rate

If running with high levels of AA is important to you, then the Radeon HD 5830 is the winner, and very much so. (explain)

Radeon HD 5830 12800 Mpixels/sec
GeForce GT 430 1GB 2800 Mpixels/sec
Difference: 10000 (357%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GT 430 1GB

Amazon.com

Radeon HD 5830

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GT 430 1GB Radeon HD 5830
Manufacturer nVidia AMD
Year October 2010 February 25, 2010
Code Name GF108 Cypress LE
Fab Process 40 nm 40 nm
Bus PCIe x16 PCIe 2.1 x16
Memory 1024 MB 1024 MB
Core Speed 700 MHz 800 MHz
Shader Speed 1400 MHz (N/A) MHz
Memory Speed 900 MHz (1800 MHz effective) 1000 MHz (4000 MHz effective)
Unified Shaders 96 1120(224x5)
Texture Mapping Units 16 56
Render Output Units 4 16
Bus Type GDDR3 GDDR5
Bus Width 128-bit 256-bit
DirectX Version DirectX 11 DirectX 11
OpenGL Version OpenGL 4.1 OpenGL 3.2
Power (Max TDP) 60 watts 175 watts
Shader Model 5.0 5.0
Bandwidth 28800 MB/sec 128000 MB/sec
Texel Rate 11200 Mtexels/sec 44800 Mtexels/sec
Pixel Rate 2800 Mpixels/sec 12800 Mpixels/sec

Memory Bandwidth: Bandwidth is the largest amount of information (in units of MB per second) that can be moved across the external memory interface in a second. It is calculated by multiplying the card's interface width by the speed of its memory. In the case of DDR RAM, the result should be multiplied by 2 again. If DDR5, multiply by 4 instead. The better the memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are applied in one second. This number is calculated by multiplying the total texture units by the core speed of the chip. The better the texel rate, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the most pixels the graphics card could possibly write to its local memory per second - measured in millions of pixels per second. The figure is calculated by multiplying the amount of colour ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate also depends on lots of other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the potential to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree