Compare any two graphics cards:
VS

GeForce GT 430 1GB vs Radeon HD 5830

Intro

The GeForce GT 430 1GB has a GPU core speed of 700 MHz, and the 1024 MB of GDDR3 memory runs at 900 MHz through a 128-bit bus. It also is comprised of 96 Stream Processors, 16 TAUs, and 4 Raster Operation Units.

Compare that to the Radeon HD 5830, which features GPU clock speed of 800 MHz, and 1024 MB of GDDR5 memory set to run at 1000 MHz through a 256-bit bus. It also is comprised of 1120(224x5) SPUs, 56 Texture Address Units, and 16 Raster Operation Units.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 430 1GB 60 Watts
Radeon HD 5830 175 Watts
Difference: 115 Watts (192%)

Memory Bandwidth

Performance-wise, the Radeon HD 5830 should theoretically be quite a bit better than the GeForce GT 430 1GB in general. (explain)

Radeon HD 5830 128000 MB/sec
GeForce GT 430 1GB 28800 MB/sec
Difference: 99200 (344%)

Texel Rate

The Radeon HD 5830 will be a lot (approximately 300%) faster with regards to anisotropic filtering than the GeForce GT 430 1GB. (explain)

Radeon HD 5830 44800 Mtexels/sec
GeForce GT 430 1GB 11200 Mtexels/sec
Difference: 33600 (300%)

Pixel Rate

The Radeon HD 5830 will be a lot (approximately 357%) better at FSAA than the GeForce GT 430 1GB, and also will be capable of handling higher screen resolutions better. (explain)

Radeon HD 5830 12800 Mpixels/sec
GeForce GT 430 1GB 2800 Mpixels/sec
Difference: 10000 (357%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GT 430 1GB

Amazon.com

Radeon HD 5830

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GT 430 1GB Radeon HD 5830
Manufacturer nVidia AMD
Year October 2010 February 25, 2010
Code Name GF108 Cypress LE
Fab Process 40 nm 40 nm
Bus PCIe x16 PCIe 2.1 x16
Memory 1024 MB 1024 MB
Core Speed 700 MHz 800 MHz
Shader Speed 1400 MHz (N/A) MHz
Memory Speed 1800 MHz 4000 MHz
Unified Shaders 96 1120(224x5)
Texture Mapping Units 16 56
Render Output Units 4 16
Bus Type GDDR3 GDDR5
Bus Width 128-bit 256-bit
DirectX Version DirectX 11 DirectX 11
OpenGL Version OpenGL 4.1 OpenGL 3.2
Power (Max TDP) 60 watts 175 watts
Shader Model 5.0 5.0
Bandwidth 28800 MB/sec 128000 MB/sec
Texel Rate 11200 Mtexels/sec 44800 Mtexels/sec
Pixel Rate 2800 Mpixels/sec 12800 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of data (in units of MB per second) that can be moved across the external memory interface in a second. It is worked out by multiplying the interface width by the speed of its memory. If the card has DDR type RAM, it must be multiplied by 2 once again. If DDR5, multiply by 4 instead. The better the memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are applied per second. This figure is calculated by multiplying the total number of texture units of the card by the core clock speed of the chip. The better this number, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics chip can possibly record to its local memory per second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of Render Output Units by the clock speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel rate also depends on lots of other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing