Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GT 430 vs GeForce GTS 250 1GB

Intro

The GeForce GT 430 has a clock speed of 700 MHz and a GDDR3 memory speed of 900 MHz. It also uses a 128-bit bus, and uses a 40 nm design. It features 96 SPUs, 16 Texture Address Units, and 4 ROPs.

Compare that to the GeForce GTS 250 1GB, which comes with core speeds of 738 MHz on the GPU, and 1100 MHz on the 1024 MB of GDDR3 RAM. It features 128 SPUs as well as 64 TAUs and 16 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 430 60 Watts
GeForce GTS 250 1GB 145 Watts
Difference: 85 Watts (142%)

Memory Bandwidth

As far as performance goes, the GeForce GTS 250 1GB should theoretically be quite a bit better than the GeForce GT 430 overall. (explain)

GeForce GTS 250 1GB 70400 MB/sec
GeForce GT 430 28800 MB/sec
Difference: 41600 (144%)

Texel Rate

The GeForce GTS 250 1GB will be a lot (more or less 322%) more effective at anisotropic filtering than the GeForce GT 430. (explain)

GeForce GTS 250 1GB 47232 Mtexels/sec
GeForce GT 430 11200 Mtexels/sec
Difference: 36032 (322%)

Pixel Rate

The GeForce GTS 250 1GB is quite a bit (about 322%) more effective at full screen anti-aliasing than the GeForce GT 430, and able to handle higher screen resolutions while still performing well. (explain)

GeForce GTS 250 1GB 11808 Mpixels/sec
GeForce GT 430 2800 Mpixels/sec
Difference: 9008 (322%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GT 430

Amazon.com

GeForce GTS 250 1GB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GT 430 GeForce GTS 250 1GB
Manufacturer nVidia nVidia
Year October 2010 March 3, 2009
Code Name GF108 G92a/b
Fab Process 40 nm 65/55 nm
Bus PCIe x16 PCIe x16 2.0
Memory 512 MB 1024 MB
Core Speed 700 MHz 738 MHz
Shader Speed 1400 MHz 1836 MHz
Memory Speed 900 MHz (1800 MHz effective) 1100 MHz (2200 MHz effective)
Unified Shaders 96 128
Texture Mapping Units 16 64
Render Output Units 4 16
Bus Type GDDR3 GDDR3
Bus Width 128-bit 256-bit
DirectX Version DirectX 11 DirectX 10
OpenGL Version OpenGL 4.1 OpenGL 3.1
Power (Max TDP) 60 watts 145 watts
Shader Model 5.0 4.0
Bandwidth 28800 MB/sec 70400 MB/sec
Texel Rate 11200 Mtexels/sec 47232 Mtexels/sec
Pixel Rate 2800 Mpixels/sec 11808 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of information (measured in megabytes per second) that can be transferred past the external memory interface in one second. The number is worked out by multiplying the card's interface width by the speed of its memory. If the card has DDR type RAM, the result should be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The better the memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be applied per second. This figure is worked out by multiplying the total number of texture units by the core clock speed of the chip. The higher this number, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels in a second.

Pixel Rate: Pixel rate is the most pixels that the graphics chip could possibly record to the local memory per second - measured in millions of pixels per second. The figure is calculated by multiplying the number of Render Output Units by the clock speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate is also dependant on many other factors, most notably the memory bandwidth - the lower the bandwidth is, the lower the ability to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing