Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GT 220 GDDR3 vs GeForce GT 430

Intro

The GeForce GT 220 GDDR3 comes with core clock speeds of 625 MHz on the GPU, and 1012 MHz on the 512 MB of GDDR3 RAM. It features 48 SPUs along with 16 Texture Address Units and 8 Rasterization Operator Units.

Compare those specifications to the GeForce GT 430, which comes with a clock speed of 700 MHz and a GDDR3 memory frequency of 900 MHz. It also makes use of a 128-bit memory bus, and makes use of a 40 nm design. It features 96 SPUs, 16 Texture Address Units, and 4 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 220 GDDR3 58 Watts
GeForce GT 430 60 Watts
Difference: 2 Watts (3%)

Memory Bandwidth

Performance-wise, the GeForce GT 220 GDDR3 should in theory be a little bit better than the GeForce GT 430 in general. (explain)

GeForce GT 220 GDDR3 32384 MB/sec
GeForce GT 430 28800 MB/sec
Difference: 3584 (12%)

Texel Rate

The GeForce GT 430 is a small bit (about 12%) more effective at anisotropic filtering than the GeForce GT 220 GDDR3. (explain)

GeForce GT 430 11200 Mtexels/sec
GeForce GT 220 GDDR3 10000 Mtexels/sec
Difference: 1200 (12%)

Pixel Rate

If using a high screen resolution is important to you, then the GeForce GT 220 GDDR3 is a better choice, by far. (explain)

GeForce GT 220 GDDR3 5000 Mpixels/sec
GeForce GT 430 2800 Mpixels/sec
Difference: 2200 (79%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GT 220 GDDR3

Amazon.com

GeForce GT 430

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GT 220 GDDR3 GeForce GT 430
Manufacturer nVidia nVidia
Year October 2009 October 2010
Code Name GT216 GF108
Fab Process 40 nm 40 nm
Bus PCIe 2.0 PCIe x16
Memory 512 MB 512 MB
Core Speed 625 MHz 700 MHz
Shader Speed 1360 MHz 1400 MHz
Memory Speed 1012 MHz (2024 MHz effective) 900 MHz (1800 MHz effective)
Unified Shaders 48 96
Texture Mapping Units 16 16
Render Output Units 8 4
Bus Type GDDR3 GDDR3
Bus Width 128-bit 128-bit
DirectX Version DirectX 10.1 DirectX 11
OpenGL Version OpenGL 3.2 OpenGL 4.1
Power (Max TDP) 58 watts 60 watts
Shader Model 4.1 5.0
Bandwidth 32384 MB/sec 28800 MB/sec
Texel Rate 10000 Mtexels/sec 11200 Mtexels/sec
Pixel Rate 5000 Mpixels/sec 2800 Mpixels/sec

Memory Bandwidth: Bandwidth is the maximum amount of information (counted in MB per second) that can be transferred across the external memory interface in a second. It's calculated by multiplying the bus width by its memory clock speed. In the case of DDR type RAM, it must be multiplied by 2 again. If DDR5, multiply by 4 instead. The better the memory bandwidth, the faster the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be processed in one second. This number is worked out by multiplying the total amount of texture units by the core clock speed of the chip. The better the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the most pixels the graphics card could possibly record to the local memory in a second - measured in millions of pixels per second. The figure is calculated by multiplying the number of colour ROPs by the clock speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel output rate also depends on quite a few other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the potential to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing