Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GT 220 GDDR3 vs GeForce GT 430

Intro

The GeForce GT 220 GDDR3 has a core clock speed of 625 MHz and a GDDR3 memory frequency of 1012 MHz. It also features a 128-bit bus, and uses a 40 nm design. It features 48 SPUs, 16 TAUs, and 8 ROPs.

Compare all that to the GeForce GT 430, which makes use of a 40 nm design. nVidia has clocked the core speed at 700 MHz. The GDDR3 memory works at a frequency of 900 MHz on this model. It features 96 SPUs along with 16 Texture Address Units and 4 ROPs.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 220 GDDR3 58 Watts
GeForce GT 430 60 Watts
Difference: 2 Watts (3%)

Memory Bandwidth

The GeForce GT 220 GDDR3 should theoretically be a little bit faster than the GeForce GT 430 overall. (explain)

GeForce GT 220 GDDR3 32384 MB/sec
GeForce GT 430 28800 MB/sec
Difference: 3584 (12%)

Texel Rate

The GeForce GT 430 will be a little bit (more or less 12%) faster with regards to anisotropic filtering than the GeForce GT 220 GDDR3. (explain)

GeForce GT 430 11200 Mtexels/sec
GeForce GT 220 GDDR3 10000 Mtexels/sec
Difference: 1200 (12%)

Pixel Rate

The GeForce GT 220 GDDR3 should be a lot (about 79%) more effective at anti-aliasing than the GeForce GT 430, and also able to handle higher screen resolutions better. (explain)

GeForce GT 220 GDDR3 5000 Mpixels/sec
GeForce GT 430 2800 Mpixels/sec
Difference: 2200 (79%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GT 220 GDDR3

Amazon.com

GeForce GT 430

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GT 220 GDDR3 GeForce GT 430
Manufacturer nVidia nVidia
Year October 2009 October 2010
Code Name GT216 GF108
Fab Process 40 nm 40 nm
Bus PCIe 2.0 PCIe x16
Memory 512 MB 512 MB
Core Speed 625 MHz 700 MHz
Shader Speed 1360 MHz 1400 MHz
Memory Speed 1012 MHz (2024 MHz effective) 900 MHz (1800 MHz effective)
Unified Shaders 48 96
Texture Mapping Units 16 16
Render Output Units 8 4
Bus Type GDDR3 GDDR3
Bus Width 128-bit 128-bit
DirectX Version DirectX 10.1 DirectX 11
OpenGL Version OpenGL 3.2 OpenGL 4.1
Power (Max TDP) 58 watts 60 watts
Shader Model 4.1 5.0
Bandwidth 32384 MB/sec 28800 MB/sec
Texel Rate 10000 Mtexels/sec 11200 Mtexels/sec
Pixel Rate 5000 Mpixels/sec 2800 Mpixels/sec

Memory Bandwidth: Bandwidth is the largest amount of data (in units of megabytes per second) that can be moved past the external memory interface in one second. It is worked out by multiplying the bus width by its memory speed. In the case of DDR RAM, it should be multiplied by 2 once again. If DDR5, multiply by ANOTHER 2x. The higher the card's memory bandwidth, the better the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are processed per second. This number is calculated by multiplying the total texture units of the card by the core clock speed of the chip. The better this number, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics chip could possibly write to the local memory in a second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the number of Render Output Units by the the card's clock speed. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate is also dependant on quite a few other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the ability to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing