Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GT 220 GDDR3 vs GeForce GT 430

Intro

The GeForce GT 220 GDDR3 comes with clock speeds of 625 MHz on the GPU, and 1012 MHz on the 512 MB of GDDR3 RAM. It features 48 SPUs along with 16 TAUs and 8 Rasterization Operator Units.

Compare all that to the GeForce GT 430, which makes use of a 40 nm design. nVidia has set the core frequency at 700 MHz. The GDDR3 RAM is set to run at a frequency of 900 MHz on this card. It features 96 SPUs along with 16 TAUs and 4 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 220 GDDR3 58 Watts
GeForce GT 430 60 Watts
Difference: 2 Watts (3%)

Memory Bandwidth

The GeForce GT 220 GDDR3, in theory, should perform a bit faster than the GeForce GT 430 overall. (explain)

GeForce GT 220 GDDR3 32384 MB/sec
GeForce GT 430 28800 MB/sec
Difference: 3584 (12%)

Texel Rate

The GeForce GT 430 will be just a bit (more or less 12%) faster with regards to texture filtering than the GeForce GT 220 GDDR3. (explain)

GeForce GT 430 11200 Mtexels/sec
GeForce GT 220 GDDR3 10000 Mtexels/sec
Difference: 1200 (12%)

Pixel Rate

The GeForce GT 220 GDDR3 will be a lot (more or less 79%) faster with regards to full screen anti-aliasing than the GeForce GT 430, and should be able to handle higher screen resolutions more effectively. (explain)

GeForce GT 220 GDDR3 5000 Mpixels/sec
GeForce GT 430 2800 Mpixels/sec
Difference: 2200 (79%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Please note that the price comparisons are based on search keywords, and might not be the exact same card listed on this page. We have no control over the accuracy of their search results.

GeForce GT 220 GDDR3

Amazon.com

Other US-based stores

GeForce GT 430

Amazon.com

Other US-based stores

Specifications

Model GeForce GT 220 GDDR3 GeForce GT 430
Manufacturer nVidia nVidia
Year October 2009 October 2010
Code Name GT216 GF108
Fab Process 40 nm 40 nm
Bus PCIe 2.0 PCIe x16
Memory 512 MB 512 MB
Core Speed 625 MHz 700 MHz
Shader Speed 1360 MHz 1400 MHz
Memory Speed 1012 MHz (2024 MHz effective) 900 MHz (1800 MHz effective)
Unified Shaders 48 96
Texture Mapping Units 16 16
Render Output Units 8 4
Bus Type GDDR3 GDDR3
Bus Width 128-bit 128-bit
DirectX Version DirectX 10.1 DirectX 11
OpenGL Version OpenGL 3.2 OpenGL 4.1
Power (Max TDP) 58 watts 60 watts
Shader Model 4.1 5.0
Bandwidth 32384 MB/sec 28800 MB/sec
Texel Rate 10000 Mtexels/sec 11200 Mtexels/sec
Pixel Rate 5000 Mpixels/sec 2800 Mpixels/sec

Memory Bandwidth: Bandwidth is the maximum amount of data (measured in megabytes per second) that can be transported past the external memory interface in a second. The number is worked out by multiplying the interface width by the speed of its memory. If it uses DDR type memory, it must be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The higher the bandwidth is, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied per second. This figure is calculated by multiplying the total texture units of the card by the core clock speed of the chip. The higher this number, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the maximum number of pixels the video card could possibly record to the local memory in a second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the number of colour ROPs by the clock speed of the card. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel output rate also depends on many other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree