Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 8400 GS 512MB vs GeForce GT 430 (OEM)

Intro

The GeForce 8400 GS 512MB has a GPU clock speed of 650 MHz, and the 512 MB of DDR2 memory runs at 400 MHz through a 64-bit bus. It also features 16 SPUs, 8 Texture Address Units, and 4 Raster Operation Units.

Compare all that to the GeForce GT 430 (OEM), which features a clock speed of 700 MHz and a GDDR3 memory frequency of 900 MHz. It also uses a 128-bit bus, and makes use of a 40 nm design. It is comprised of 96 SPUs, 16 Texture Address Units, and 4 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 8400 GS 512MB 40 Watts
GeForce GT 430 (OEM) 60 Watts
Difference: 20 Watts (50%)

Memory Bandwidth

In theory, the GeForce GT 430 (OEM) will be 350% faster than the GeForce 8400 GS 512MB overall, due to its higher data rate. (explain)

GeForce GT 430 (OEM) 28800 MB/sec
GeForce 8400 GS 512MB 6400 MB/sec
Difference: 22400 (350%)

Texel Rate

The GeForce GT 430 (OEM) should be much (about 115%) better at texture filtering than the GeForce 8400 GS 512MB. (explain)

GeForce GT 430 (OEM) 11200 Mtexels/sec
GeForce 8400 GS 512MB 5200 Mtexels/sec
Difference: 6000 (115%)

Pixel Rate

The GeForce GT 430 (OEM) will be a little bit (approximately 8%) faster with regards to FSAA than the GeForce 8400 GS 512MB, and should be capable of handling higher resolutions more effectively. (explain)

GeForce GT 430 (OEM) 2800 Mpixels/sec
GeForce 8400 GS 512MB 2600 Mpixels/sec
Difference: 200 (8%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce 8400 GS 512MB

Amazon.com

GeForce GT 430 (OEM)

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce 8400 GS 512MB GeForce GT 430 (OEM)
Manufacturer nVidia nVidia
Year June 2007 October 2010
Code Name G86 GF108
Fab Process 80 nm 40 nm
Bus PCIe x16, PCI PCIe x16
Memory 512 MB 2048 MB
Core Speed 650 MHz 700 MHz
Shader Speed 1100 MHz 1400 MHz
Memory Speed 400 MHz (800 MHz effective) 900 MHz (1800 MHz effective)
Unified Shaders 16 96
Texture Mapping Units 8 16
Render Output Units 4 4
Bus Type DDR2 GDDR3
Bus Width 64-bit 128-bit
DirectX Version DirectX 10 DirectX 11
OpenGL Version OpenGL 3.0 OpenGL 4.1
Power (Max TDP) 40 watts 60 watts
Shader Model 4.0 5.0
Bandwidth 6400 MB/sec 28800 MB/sec
Texel Rate 5200 Mtexels/sec 11200 Mtexels/sec
Pixel Rate 2600 Mpixels/sec 2800 Mpixels/sec

Memory Bandwidth: Bandwidth is the maximum amount of data (measured in MB per second) that can be transported across the external memory interface within a second. The number is worked out by multiplying the interface width by its memory speed. If it uses DDR memory, the result should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The better the memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be applied in one second. This is calculated by multiplying the total amount of texture units by the core clock speed of the chip. The higher this number, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the most pixels that the graphics chip could possibly record to the local memory in one second - measured in millions of pixels per second. The figure is calculated by multiplying the amount of ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel rate also depends on many other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing