Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 260 vs Radeon HD 6970

Intro

The GeForce GTX 260 comes with core clock speeds of 576 MHz on the GPU, and 999 MHz on the 896 MB of GDDR3 memory. It features 192 SPUs along with 64 TAUs and 28 ROPs.

Compare all that to the Radeon HD 6970, which features GPU clock speed of 880 MHz, and 2048 MB of GDDR5 RAM set to run at 1375 MHz through a 256-bit bus. It also is made up of 1536 SPUs, 96 TAUs, and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 260 182 Watts
Radeon HD 6970 250 Watts
Difference: 68 Watts (37%)

Memory Bandwidth

In theory, the Radeon HD 6970 should be 57% quicker than the GeForce GTX 260 in general, due to its higher bandwidth. (explain)

Radeon HD 6970 176000 MB/sec
GeForce GTX 260 111888 MB/sec
Difference: 64112 (57%)

Texel Rate

The Radeon HD 6970 will be quite a bit (more or less 129%) faster with regards to anisotropic filtering than the GeForce GTX 260. (explain)

Radeon HD 6970 84480 Mtexels/sec
GeForce GTX 260 36864 Mtexels/sec
Difference: 47616 (129%)

Pixel Rate

If running with lots of anti-aliasing is important to you, then the Radeon HD 6970 is superior to the GeForce GTX 260, and very much so. (explain)

Radeon HD 6970 28160 Mpixels/sec
GeForce GTX 260 16128 Mpixels/sec
Difference: 12032 (75%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 260

Amazon.com

Radeon HD 6970

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 260 Radeon HD 6970
Manufacturer nVidia AMD
Year June 16, 2008 December 2010
Code Name G200 Cayman XT
Fab Process 65 nm 40 nm
Bus PCIe x16 2.0 PCIe x16
Memory 896 MB 2048 MB
Core Speed 576 MHz 880 MHz
Shader Speed 1242 MHz (N/A) MHz
Memory Speed 999 MHz (1998 MHz effective) 1375 MHz (5500 MHz effective)
Unified Shaders 192 1536
Texture Mapping Units 64 96
Render Output Units 28 32
Bus Type GDDR3 GDDR5
Bus Width 448-bit 256-bit
DirectX Version DirectX 10 DirectX 11
OpenGL Version OpenGL 3.1 OpenGL 4.1
Power (Max TDP) 182 watts 250 watts
Shader Model 4.0 5.0
Bandwidth 111888 MB/sec 176000 MB/sec
Texel Rate 36864 Mtexels/sec 84480 Mtexels/sec
Pixel Rate 16128 Mpixels/sec 28160 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of information (in units of megabytes per second) that can be transferred past the external memory interface in one second. It's calculated by multiplying the interface width by the speed of its memory. In the case of DDR RAM, it should be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The better the card's memory bandwidth, the better the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are applied in one second. This figure is calculated by multiplying the total amount of texture units by the core speed of the chip. The better this number, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in one second.

Pixel Rate: Pixel rate is the most pixels the graphics card can possibly record to the local memory in one second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the number of Raster Operations Pipelines by the the card's clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate is also dependant on quite a few other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree