Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 9600 GT 1GB vs Radeon HD 6950

Intro

The GeForce 9600 GT 1GB has clock speeds of 650 MHz on the GPU, and 900 MHz on the 1024 MB of GDDR3 RAM. It features 64 SPUs along with 32 TAUs and 16 Rasterization Operator Units.

Compare those specifications to the Radeon HD 6950, which comes with GPU core speed of 800 MHz, and 1024 MB of GDDR5 RAM set to run at 1250 MHz through a 256-bit bus. It also is comprised of 1408 Stream Processors, 88 TAUs, and 32 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 9600 GT 1GB 95 Watts
Radeon HD 6950 200 Watts
Difference: 105 Watts (111%)

Memory Bandwidth

Theoretically, the Radeon HD 6950 should be quite a bit faster than the GeForce 9600 GT 1GB overall. (explain)

Radeon HD 6950 160000 MB/sec
GeForce 9600 GT 1GB 57600 MB/sec
Difference: 102400 (178%)

Texel Rate

The Radeon HD 6950 is much (more or less 238%) faster with regards to anisotropic filtering than the GeForce 9600 GT 1GB. (explain)

Radeon HD 6950 70400 Mtexels/sec
GeForce 9600 GT 1GB 20800 Mtexels/sec
Difference: 49600 (238%)

Pixel Rate

If using a high resolution is important to you, then the Radeon HD 6950 is the winner, by far. (explain)

Radeon HD 6950 25600 Mpixels/sec
GeForce 9600 GT 1GB 10400 Mpixels/sec
Difference: 15200 (146%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Please note that the price comparisons are based on search keywords, and might not be the exact same card listed on this page. We have no control over the accuracy of their search results.

GeForce 9600 GT 1GB

Amazon.com

Other US-based stores

Radeon HD 6950

Amazon.com

Other US-based stores

Specifications

Model GeForce 9600 GT 1GB Radeon HD 6950
Manufacturer nVidia ATi
Year Feb 2008 December 2010
Code Name G94a/b Cayman Pro
Fab Process 65/55 nm 40 nm
Bus PCIe x16 2.0 PCIe x16
Memory 1024 MB 1024 MB
Core Speed 650 MHz 800 MHz
Shader Speed 1625 MHz (N/A) MHz
Memory Speed 900 MHz (1800 MHz effective) 1250 MHz (5000 MHz effective)
Unified Shaders 64 1408
Texture Mapping Units 32 88
Render Output Units 16 32
Bus Type GDDR3 GDDR5
Bus Width 256-bit 256-bit
DirectX Version DirectX 10 DirectX 11
OpenGL Version OpenGL 3.0 OpenGL 4.1
Power (Max TDP) 95 watts 200 watts
Shader Model 4.0 5.0
Bandwidth 57600 MB/sec 160000 MB/sec
Texel Rate 20800 Mtexels/sec 70400 Mtexels/sec
Pixel Rate 10400 Mpixels/sec 25600 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the largest amount of information (measured in MB per second) that can be moved past the external memory interface within a second. The number is worked out by multiplying the interface width by the speed of its memory. In the case of DDR type RAM, it must be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The better the card's memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be processed in one second. This figure is calculated by multiplying the total texture units of the card by the core clock speed of the chip. The higher this number, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics chip could possibly write to the local memory in one second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the number of Render Output Units by the the card's clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate also depends on many other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the ability to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree