Join Us On Facebook

Compare any two graphics cards:
VS

Radeon HD 6750 vs Radeon HD 6850

Intro

The Radeon HD 6750 has a clock frequency of 725 MHz and a GDDR5 memory speed of 1000 MHz. It also features a 128-bit bus, and makes use of a 40 nm design. It features 720 SPUs, 36 Texture Address Units, and 16 ROPs.

Compare all of that to the Radeon HD 6850, which has core clock speeds of 775 MHz on the GPU, and 1000 MHz on the 1024 MB of GDDR5 RAM. It features 960 SPUs along with 48 Texture Address Units and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 6750 86 Watts
Radeon HD 6850 127 Watts
Difference: 41 Watts (48%)

Memory Bandwidth

Theoretically speaking, the Radeon HD 6850 should be much faster than the Radeon HD 6750 in general. (explain)

Radeon HD 6850 128000 MB/sec
Radeon HD 6750 64000 MB/sec
Difference: 64000 (100%)

Texel Rate

The Radeon HD 6850 should be quite a bit (approximately 43%) more effective at texture filtering than the Radeon HD 6750. (explain)

Radeon HD 6850 37200 Mtexels/sec
Radeon HD 6750 26100 Mtexels/sec
Difference: 11100 (43%)

Pixel Rate

The Radeon HD 6850 should be quite a bit (more or less 114%) better at anti-aliasing than the Radeon HD 6750, and also will be able to handle higher resolutions without slowing down too much. (explain)

Radeon HD 6850 24800 Mpixels/sec
Radeon HD 6750 11600 Mpixels/sec
Difference: 13200 (114%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Please note that the price comparisons are based on search keywords, and might not be the exact same card listed on this page. We have no control over the accuracy of their search results.

Radeon HD 6750

Amazon.com

Other US-based stores

Radeon HD 6850

Amazon.com

Other US-based stores

Specifications

Model Radeon HD 6750 Radeon HD 6850
Manufacturer ATi ATi
Year January 2011 October 2010
Code Name Juniper Pro Barts Pro
Fab Process 40 nm 40 nm
Bus PCIe x16 PCIe x16
Memory 512 MB 1024 MB
Core Speed 725 MHz 775 MHz
Shader Speed N/A MHz (N/A) MHz
Memory Speed 1000 MHz (4000 MHz effective) 1000 MHz (4000 MHz effective)
Unified Shaders 720 960
Texture Mapping Units 36 48
Render Output Units 16 32
Bus Type GDDR5 GDDR5
Bus Width 128-bit 256-bit
DirectX Version DirectX 11 DirectX 11
OpenGL Version OpenGL 4.0 OpenGL 4.1
Power (Max TDP) 86 watts 127 watts
Shader Model 5.0 5.0
Bandwidth 64000 MB/sec 128000 MB/sec
Texel Rate 26100 Mtexels/sec 37200 Mtexels/sec
Pixel Rate 11600 Mpixels/sec 24800 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of data (in units of megabytes per second) that can be transferred across the external memory interface in a second. The number is calculated by multiplying the interface width by its memory speed. In the case of DDR type memory, it must be multiplied by 2 once again. If DDR5, multiply by ANOTHER 2x. The better the memory bandwidth, the faster the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be applied in one second. This number is calculated by multiplying the total number of texture units by the core speed of the chip. The better the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the maximum amount of pixels the video card could possibly record to its local memory in one second - measured in millions of pixels per second. The number is worked out by multiplying the number of colour ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate is also dependant on many other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree