Compare any two graphics cards:
VS

Radeon HD 6750 vs Radeon HD 6850

Intro

The Radeon HD 6750 makes use of a 40 nm design. AMD has clocked the core speed at 725 MHz. The GDDR5 RAM is set to run at a speed of 1000 MHz on this particular model. It features 720 SPUs as well as 36 TAUs and 16 ROPs.

Compare all of that to the Radeon HD 6850, which comes with a clock speed of 775 MHz and a GDDR5 memory speed of 1000 MHz. It also features a 256-bit memory bus, and makes use of a 40 nm design. It features 960 SPUs, 48 TAUs, and 32 ROPs.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 6750 86 Watts
Radeon HD 6850 127 Watts
Difference: 41 Watts (48%)

Memory Bandwidth

The Radeon HD 6850 should in theory perform a lot faster than the Radeon HD 6750 overall. (explain)

Radeon HD 6850 128000 MB/sec
Radeon HD 6750 64000 MB/sec
Difference: 64000 (100%)

Texel Rate

The Radeon HD 6850 will be a lot (more or less 43%) better at texture filtering than the Radeon HD 6750. (explain)

Radeon HD 6850 37200 Mtexels/sec
Radeon HD 6750 26100 Mtexels/sec
Difference: 11100 (43%)

Pixel Rate

The Radeon HD 6850 will be quite a bit (more or less 114%) better at full screen anti-aliasing than the Radeon HD 6750, and will be capable of handling higher screen resolutions while still performing well. (explain)

Radeon HD 6850 24800 Mpixels/sec
Radeon HD 6750 11600 Mpixels/sec
Difference: 13200 (114%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

Radeon HD 6750

Amazon.com

Radeon HD 6850

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model Radeon HD 6750 Radeon HD 6850
Manufacturer AMD AMD
Year January 2011 October 2010
Code Name Juniper Pro Barts Pro
Fab Process 40 nm 40 nm
Bus PCIe x16 PCIe x16
Memory 512 MB 1024 MB
Core Speed 725 MHz 775 MHz
Shader Speed N/A MHz (N/A) MHz
Memory Speed 4000 MHz 4000 MHz
Unified Shaders 720 960
Texture Mapping Units 36 48
Render Output Units 16 32
Bus Type GDDR5 GDDR5
Bus Width 128-bit 256-bit
DirectX Version DirectX 11 DirectX 11
OpenGL Version OpenGL 4.0 OpenGL 4.1
Power (Max TDP) 86 watts 127 watts
Shader Model 5.0 5.0
Bandwidth 64000 MB/sec 128000 MB/sec
Texel Rate 26100 Mtexels/sec 37200 Mtexels/sec
Pixel Rate 11600 Mpixels/sec 24800 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of information (in units of megabytes per second) that can be transferred past the external memory interface in one second. It is worked out by multiplying the card's interface width by its memory speed. In the case of DDR type memory, the result should be multiplied by 2 once again. If DDR5, multiply by ANOTHER 2x. The better the memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are applied per second. This number is calculated by multiplying the total amount of texture units by the core clock speed of the chip. The higher the texel rate, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the maximum amount of pixels the video card can possibly write to the local memory in one second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the number of Raster Operations Pipelines by the the core speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel output rate also depends on quite a few other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing