Join Us On Facebook

Compare any two graphics cards:
VS

Radeon HD 6750 vs Radeon HD 6850

Intro

The Radeon HD 6750 features core speeds of 725 MHz on the GPU, and 1000 MHz on the 512 MB of GDDR5 memory. It features 720 SPUs along with 36 Texture Address Units and 16 Rasterization Operator Units.

Compare those specifications to the Radeon HD 6850, which features GPU core speed of 775 MHz, and 1024 MB of GDDR5 RAM set to run at 1000 MHz through a 256-bit bus. It also features 960 SPUs, 48 TAUs, and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 6750 86 Watts
Radeon HD 6850 127 Watts
Difference: 41 Watts (48%)

Memory Bandwidth

As far as performance goes, the Radeon HD 6850 should in theory be a lot superior to the Radeon HD 6750 in general. (explain)

Radeon HD 6850 128000 MB/sec
Radeon HD 6750 64000 MB/sec
Difference: 64000 (100%)

Texel Rate

The Radeon HD 6850 is much (more or less 43%) faster with regards to texture filtering than the Radeon HD 6750. (explain)

Radeon HD 6850 37200 Mtexels/sec
Radeon HD 6750 26100 Mtexels/sec
Difference: 11100 (43%)

Pixel Rate

If running with a high resolution is important to you, then the Radeon HD 6850 is the winner, by a large margin. (explain)

Radeon HD 6850 24800 Mpixels/sec
Radeon HD 6750 11600 Mpixels/sec
Difference: 13200 (114%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Radeon HD 6750

Amazon.com

Radeon HD 6850

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model Radeon HD 6750 Radeon HD 6850
Manufacturer AMD AMD
Year January 2011 October 2010
Code Name Juniper Pro Barts Pro
Fab Process 40 nm 40 nm
Bus PCIe x16 PCIe x16
Memory 512 MB 1024 MB
Core Speed 725 MHz 775 MHz
Shader Speed N/A MHz (N/A) MHz
Memory Speed 1000 MHz (4000 MHz effective) 1000 MHz (4000 MHz effective)
Unified Shaders 720 960
Texture Mapping Units 36 48
Render Output Units 16 32
Bus Type GDDR5 GDDR5
Bus Width 128-bit 256-bit
DirectX Version DirectX 11 DirectX 11
OpenGL Version OpenGL 4.0 OpenGL 4.1
Power (Max TDP) 86 watts 127 watts
Shader Model 5.0 5.0
Bandwidth 64000 MB/sec 128000 MB/sec
Texel Rate 26100 Mtexels/sec 37200 Mtexels/sec
Pixel Rate 11600 Mpixels/sec 24800 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the largest amount of information (in units of MB per second) that can be moved past the external memory interface in a second. The number is calculated by multiplying the card's interface width by its memory speed. In the case of DDR type memory, it should be multiplied by 2 again. If DDR5, multiply by 4 instead. The higher the bandwidth is, the better the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be applied per second. This is worked out by multiplying the total texture units of the card by the core speed of the chip. The better the texel rate, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the maximum number of pixels the graphics card can possibly write to the local memory per second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of Raster Operations Pipelines by the clock speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate is also dependant on lots of other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree