Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 9800 GX2 vs Radeon HD 4870 512MB

Intro

The GeForce 9800 GX2 comes with a clock speed of 600 MHz and a GDDR3 memory speed of 1000 MHz. It also makes use of a 256-bit memory bus, and uses a 65 nm design. It is made up of 128 SPUs, 64 Texture Address Units, and 16 ROPs.

Compare those specifications to the Radeon HD 4870 512MB, which has core speeds of 750 MHz on the GPU, and 900 MHz on the 512 MB of GDDR5 memory. It features 800(160x5) SPUs along with 40 Texture Address Units and 16 Rasterization Operator Units.

Left4Dead 2

Settings: Very High
AA: 8x
AF: 16x
Resolution: 1920x1200
Test Machine: Tom's Hardware Test Machine (Source)
GeForce 9800 GX2 81 FPS
Radeon HD 4870 512MB 77 FPS
Difference: 4 FPS (5%)

Supreme Commander 2

Settings: High
AA: 8x
AF: 16x
Resolution: 1920x1200
Test Machine: Tom's Hardware Test Machine (Source)
GeForce 9800 GX2 55 FPS
Radeon HD 4870 512MB 55 FPS
Difference: 0 FPS (0%)

GeForce 9800 GX2 wins

(Based entirely on the benchmarks listed above)

When combining all game benchmark scores on this page together, the GeForce 9800 GX2 wins overall, by 4 FPS. Please note that we do not have the results of every benchmark ever done for these cards, so the results may differ wildly in different games.

GeForce 9800 GX2 136 FPS
Radeon HD 4870 512MB 132 FPS
Difference: 4 FPS (3%)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 4870 512MB 150 Watts
GeForce 9800 GX2 197 Watts
Difference: 47 Watts (31%)

Memory Bandwidth

Theoretically speaking, the GeForce 9800 GX2 should perform a small bit faster than the Radeon HD 4870 512MB overall. (explain)

GeForce 9800 GX2 128000 MB/sec
Radeon HD 4870 512MB 115200 MB/sec
Difference: 12800 (11%)

Texel Rate

The GeForce 9800 GX2 should be a lot (about 156%) more effective at AF than the Radeon HD 4870 512MB. (explain)

GeForce 9800 GX2 76800 Mtexels/sec
Radeon HD 4870 512MB 30000 Mtexels/sec
Difference: 46800 (156%)

Pixel Rate

If running with lots of anti-aliasing is important to you, then the GeForce 9800 GX2 is a better choice, by far. (explain)

GeForce 9800 GX2 19200 Mpixels/sec
Radeon HD 4870 512MB 12000 Mpixels/sec
Difference: 7200 (60%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

One or more cards in this comparison are multi-core. This means that their bandwidth, texel and pixel rates are theoretically doubled - this does not mean the card will actually perform twice as fast, but only that it should in theory be able to. Actual game benchmarks will give a more accurate idea of what it's capable of.

Price Comparison

GeForce 9800 GX2

Amazon.com

Radeon HD 4870 512MB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce 9800 GX2 Radeon HD 4870 512MB
Manufacturer nVidia AMD
Year Mar 2008 Jun 25, 2008
Code Name G92 RV770 XT
Fab Process 65 nm 55 nm
Bus PCIe x16 2.0 PCIe 2.0 x16
Memory 512 MB (x2) 512 MB
Core Speed 600 MHz (x2) 750 MHz
Shader Speed 1500 MHz (x2) (N/A) MHz
Memory Speed 1000 MHz (2000 MHz effective) (x2) 900 MHz (3600 MHz effective)
Unified Shaders 128 (x2) 800(160x5)
Texture Mapping Units 64 (x2) 40
Render Output Units 16 (x2) 16
Bus Type GDDR3 GDDR5
Bus Width 256-bit (x2) 256-bit
DirectX Version DirectX 10 DirectX 10.1
OpenGL Version OpenGL 3.0 OpenGL 3.0
Power (Max TDP) 197 watts 150 watts
Shader Model 4.0 4.1
Bandwidth 128000 MB/sec 115200 MB/sec
Texel Rate 76800 Mtexels/sec 30000 Mtexels/sec
Pixel Rate 19200 Mpixels/sec 12000 Mpixels/sec

Memory Bandwidth: Bandwidth is the maximum amount of data (measured in MB per second) that can be transported past the external memory interface in a second. It's calculated by multiplying the card's interface width by the speed of its memory. If the card has DDR type RAM, the result should be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The better the card's memory bandwidth, the faster the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied in one second. This is worked out by multiplying the total amount of texture units of the card by the core speed of the chip. The better the texel rate, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics card could possibly record to its local memory in one second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the number of Raster Operations Pipelines by the the card's clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate is also dependant on many other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree