Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce 9800 GX2 vs Radeon HD 4870 512MB

Intro

The GeForce 9800 GX2 features core speeds of 600 MHz on the GPU, and 1000 MHz on the 512 MB of GDDR3 memory. It features 128 SPUs as well as 64 TAUs and 16 ROPs.

Compare those specs to the Radeon HD 4870 512MB, which comes with GPU core speed of 750 MHz, and 512 MB of GDDR5 RAM running at 900 MHz through a 256-bit bus. It also is made up of 800(160x5) SPUs, 40 TAUs, and 16 Raster Operation Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 4870 512MB 150 Watts
GeForce 9800 GX2 197 Watts
Difference: 47 Watts (31%)

Memory Bandwidth

In theory, the GeForce 9800 GX2 should be 11% faster than the Radeon HD 4870 512MB overall, because of its greater data rate. (explain)

GeForce 9800 GX2 128000 MB/sec
Radeon HD 4870 512MB 115200 MB/sec
Difference: 12800 (11%)

Texel Rate

The GeForce 9800 GX2 will be much (approximately 156%) more effective at texture filtering than the Radeon HD 4870 512MB. (explain)

GeForce 9800 GX2 76800 Mtexels/sec
Radeon HD 4870 512MB 30000 Mtexels/sec
Difference: 46800 (156%)

Pixel Rate

The GeForce 9800 GX2 should be much (more or less 60%) more effective at AA than the Radeon HD 4870 512MB, and should be able to handle higher resolutions more effectively. (explain)

GeForce 9800 GX2 19200 Mpixels/sec
Radeon HD 4870 512MB 12000 Mpixels/sec
Difference: 7200 (60%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

One or more cards in this comparison are multi-core. This means that their bandwidth, texel and pixel rates are theoretically doubled - this does not mean the card will actually perform twice as fast, but only that it should in theory be able to. Actual game benchmarks will give a more accurate idea of what it's capable of.

Price Comparison

Display Prices

Hide Prices

GeForce 9800 GX2

Amazon.com

Radeon HD 4870 512MB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 9800 GX2 Radeon HD 4870 512MB
Manufacturer nVidia AMD
Year Mar 2008 Jun 25, 2008
Code Name G92 RV770 XT
Memory 512 MB (x2) 512 MB
Core Speed 600 MHz (x2) 750 MHz
Memory Speed 2000 MHz (x2) 3600 MHz
Power (Max TDP) 197 watts 150 watts
Bandwidth 128000 MB/sec 115200 MB/sec
Texel Rate 76800 Mtexels/sec 30000 Mtexels/sec
Pixel Rate 19200 Mpixels/sec 12000 Mpixels/sec
Unified Shaders 128 (x2) 800(160x5)
Texture Mapping Units 64 (x2) 40
Render Output Units 16 (x2) 16
Bus Type GDDR3 GDDR5
Bus Width 256-bit (x2) 256-bit
Fab Process 65 nm 55 nm
Transistors 754 million 956 million
Bus PCIe x16 2.0 PCIe 2.0 x16
DirectX Version DirectX 10 DirectX 10.1
OpenGL Version OpenGL 3.0 OpenGL 3.0

Memory Bandwidth: Bandwidth is the max amount of information (measured in megabytes per second) that can be transported across the external memory interface in a second. It's calculated by multiplying the card's interface width by the speed of its memory. In the case of DDR type RAM, it should be multiplied by 2 again. If DDR5, multiply by 4 instead. The higher the card's memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be applied in one second. This number is worked out by multiplying the total amount of texture units by the core speed of the chip. The higher the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics card could possibly record to the local memory per second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of Raster Operations Pipelines by the clock speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate also depends on many other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]