Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 9500 GT 512MB GDDR3 vs Radeon HD 5450

Intro

The GeForce 9500 GT 512MB GDDR3 has a core clock speed of 550 MHz and a GDDR3 memory speed of 800 MHz. It also makes use of a 128-bit memory bus, and uses a 55 nm design. It is made up of 32 SPUs, 16 Texture Address Units, and 8 ROPs.

Compare all of that to the Radeon HD 5450, which comes with a core clock speed of 650 MHz and a DDR3 memory speed of 800 MHz. It also features a 64-bit bus, and makes use of a 40 nm design. It is made up of 80(16x5) SPUs, 8 Texture Address Units, and 4 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 5450 19 Watts
GeForce 9500 GT 512MB GDDR3 50 Watts
Difference: 31 Watts (163%)

Memory Bandwidth

In theory, the GeForce 9500 GT 512MB GDDR3 should be a lot faster than the Radeon HD 5450 overall. (explain)

GeForce 9500 GT 512MB GDDR3 25600 MB/sec
Radeon HD 5450 12800 MB/sec
Difference: 12800 (100%)

Texel Rate

The GeForce 9500 GT 512MB GDDR3 should be much (about 69%) more effective at texture filtering than the Radeon HD 5450. (explain)

GeForce 9500 GT 512MB GDDR3 8800 Mtexels/sec
Radeon HD 5450 5200 Mtexels/sec
Difference: 3600 (69%)

Pixel Rate

The GeForce 9500 GT 512MB GDDR3 should be much (about 69%) more effective at AA than the Radeon HD 5450, and also should be capable of handling higher screen resolutions without losing too much performance. (explain)

GeForce 9500 GT 512MB GDDR3 4400 Mpixels/sec
Radeon HD 5450 2600 Mpixels/sec
Difference: 1800 (69%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce 9500 GT 512MB GDDR3

Amazon.com

Radeon HD 5450

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce 9500 GT 512MB GDDR3 Radeon HD 5450
Manufacturer nVidia AMD
Year July 2008 February 4, 2010
Code Name G96b Cedar PRO
Fab Process 55 nm 40 nm
Bus PCIe x16 2.0, PCI PCIe 2.1 x16
Memory 512 MB 512 MB
Core Speed 550 MHz 650 MHz
Shader Speed 1400 MHz (N/A) MHz
Memory Speed 800 MHz (1600 MHz effective) 800 MHz (1600 MHz effective)
Unified Shaders 32 80(16x5)
Texture Mapping Units 16 8
Render Output Units 8 4
Bus Type GDDR3 DDR3
Bus Width 128-bit 64-bit
DirectX Version DirectX 10 DirectX 11
OpenGL Version OpenGL 3.0 OpenGL 3.2
Power (Max TDP) 50 watts 19 watts
Shader Model 4.0 5.0
Bandwidth 25600 MB/sec 12800 MB/sec
Texel Rate 8800 Mtexels/sec 5200 Mtexels/sec
Pixel Rate 4400 Mpixels/sec 2600 Mpixels/sec

Memory Bandwidth: Bandwidth is the max amount of data (measured in MB per second) that can be transported over the external memory interface in a second. The number is calculated by multiplying the interface width by its memory clock speed. If it uses DDR type RAM, it must be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The better the memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be processed per second. This number is calculated by multiplying the total amount of texture units of the card by the core clock speed of the chip. The better this number, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics card can possibly write to the local memory per second - measured in millions of pixels per second. The number is calculated by multiplying the number of ROPs by the clock speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate is also dependant on quite a few other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing