Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 8600 GT 256MB DDR2 vs Radeon HD 5450

Intro

The GeForce 8600 GT 256MB DDR2 comes with a core clock speed of 540 MHz and a DDR2 memory frequency of 400 MHz. It also uses a 128-bit bus, and uses a 80 nm design. It is made up of 32 SPUs, 16 TAUs, and 8 Raster Operation Units.

Compare all that to the Radeon HD 5450, which makes use of a 40 nm design. AMD has clocked the core speed at 650 MHz. The DDR3 memory is set to run at a frequency of 800 MHz on this model. It features 80(16x5) SPUs along with 8 Texture Address Units and 4 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 5450 19 Watts
GeForce 8600 GT 256MB DDR2 47 Watts
Difference: 28 Watts (147%)

Memory Bandwidth

Both cards have exactly the same bandwidth, so theoretically they should perform exactly the same. (explain)

Texel Rate

The GeForce 8600 GT 256MB DDR2 is quite a bit (approximately 66%) better at anisotropic filtering than the Radeon HD 5450. (explain)

GeForce 8600 GT 256MB DDR2 8640 Mtexels/sec
Radeon HD 5450 5200 Mtexels/sec
Difference: 3440 (66%)

Pixel Rate

If using a high screen resolution is important to you, then the GeForce 8600 GT 256MB DDR2 is the winner, by a large margin. (explain)

GeForce 8600 GT 256MB DDR2 4320 Mpixels/sec
Radeon HD 5450 2600 Mpixels/sec
Difference: 1720 (66%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce 8600 GT 256MB DDR2

Amazon.com

Radeon HD 5450

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce 8600 GT 256MB DDR2 Radeon HD 5450
Manufacturer nVidia AMD
Year April 2007 February 4, 2010
Code Name G84 Cedar PRO
Fab Process 80 nm 40 nm
Bus PCIe x16 PCIe 2.1 x16
Memory 256 MB 512 MB
Core Speed 540 MHz 650 MHz
Shader Speed 1180 MHz (N/A) MHz
Memory Speed 400 MHz (800 MHz effective) 800 MHz (1600 MHz effective)
Unified Shaders 32 80(16x5)
Texture Mapping Units 16 8
Render Output Units 8 4
Bus Type DDR2 DDR3
Bus Width 128-bit 64-bit
DirectX Version DirectX 10 DirectX 11
OpenGL Version OpenGL 3.0 OpenGL 3.2
Power (Max TDP) 47 watts 19 watts
Shader Model 4.0 5.0
Bandwidth 12800 MB/sec 12800 MB/sec
Texel Rate 8640 Mtexels/sec 5200 Mtexels/sec
Pixel Rate 4320 Mpixels/sec 2600 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the largest amount of information (in units of MB per second) that can be transported past the external memory interface in a second. It is calculated by multiplying the card's bus width by the speed of its memory. In the case of DDR type RAM, it should be multiplied by 2 once again. If it uses DDR5, multiply by 4 instead. The better the memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are processed per second. This number is worked out by multiplying the total texture units by the core speed of the chip. The higher the texel rate, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the maximum amount of pixels the video card could possibly record to its local memory in one second - measured in millions of pixels per second. The figure is worked out by multiplying the number of Render Output Units by the clock speed of the card. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate also depends on quite a few other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree