Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 8400 GS 512MB vs GeForce 9600 GT 1GB

Intro

The GeForce 8400 GS 512MB comes with core speeds of 650 MHz on the GPU, and 400 MHz on the 512 MB of DDR2 memory. It features 16 SPUs as well as 8 TAUs and 4 Rasterization Operator Units.

Compare those specifications to the GeForce 9600 GT 1GB, which has a clock speed of 650 MHz and a GDDR3 memory speed of 900 MHz. It also makes use of a 256-bit memory bus, and makes use of a 65/55 nm design. It is made up of 64 SPUs, 32 TAUs, and 16 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 8400 GS 512MB 40 Watts
GeForce 9600 GT 1GB 95 Watts
Difference: 55 Watts (138%)

Memory Bandwidth

Performance-wise, the GeForce 9600 GT 1GB should theoretically be a lot superior to the GeForce 8400 GS 512MB in general. (explain)

GeForce 9600 GT 1GB 57600 MB/sec
GeForce 8400 GS 512MB 6400 MB/sec
Difference: 51200 (800%)

Texel Rate

The GeForce 9600 GT 1GB is quite a bit (approximately 300%) more effective at texture filtering than the GeForce 8400 GS 512MB. (explain)

GeForce 9600 GT 1GB 20800 Mtexels/sec
GeForce 8400 GS 512MB 5200 Mtexels/sec
Difference: 15600 (300%)

Pixel Rate

The GeForce 9600 GT 1GB is a lot (more or less 300%) faster with regards to full screen anti-aliasing than the GeForce 8400 GS 512MB, and also able to handle higher resolutions without slowing down too much. (explain)

GeForce 9600 GT 1GB 10400 Mpixels/sec
GeForce 8400 GS 512MB 2600 Mpixels/sec
Difference: 7800 (300%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce 8400 GS 512MB

Amazon.com

GeForce 9600 GT 1GB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce 8400 GS 512MB GeForce 9600 GT 1GB
Manufacturer nVidia nVidia
Year June 2007 Feb 2008
Code Name G86 G94a/b
Fab Process 80 nm 65/55 nm
Bus PCIe x16, PCI PCIe x16 2.0
Memory 512 MB 1024 MB
Core Speed 650 MHz 650 MHz
Shader Speed 1100 MHz 1625 MHz
Memory Speed 400 MHz (800 MHz effective) 900 MHz (1800 MHz effective)
Unified Shaders 16 64
Texture Mapping Units 8 32
Render Output Units 4 16
Bus Type DDR2 GDDR3
Bus Width 64-bit 256-bit
DirectX Version DirectX 10 DirectX 10
OpenGL Version OpenGL 3.0 OpenGL 3.0
Power (Max TDP) 40 watts 95 watts
Shader Model 4.0 4.0
Bandwidth 6400 MB/sec 57600 MB/sec
Texel Rate 5200 Mtexels/sec 20800 Mtexels/sec
Pixel Rate 2600 Mpixels/sec 10400 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the largest amount of data (in units of MB per second) that can be transported across the external memory interface in one second. It's calculated by multiplying the bus width by its memory clock speed. If the card has DDR memory, it must be multiplied by 2 once again. If it uses DDR5, multiply by 4 instead. The better the card's memory bandwidth, the better the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are processed in one second. This figure is calculated by multiplying the total amount of texture units by the core speed of the chip. The better this number, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the most pixels that the graphics chip can possibly record to the local memory in a second - measured in millions of pixels per second. The number is calculated by multiplying the amount of colour ROPs by the clock speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate is also dependant on lots of other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the ability to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree