Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 8400 GS 512MB vs GeForce 9600 GT 1GB

Intro

The GeForce 8400 GS 512MB has a GPU core speed of 650 MHz, and the 512 MB of DDR2 memory runs at 400 MHz through a 64-bit bus. It also features 16 Stream Processors, 8 TAUs, and 4 Raster Operation Units.

Compare all that to the GeForce 9600 GT 1GB, which makes use of a 65/55 nm design. nVidia has clocked the core speed at 650 MHz. The GDDR3 memory works at a speed of 900 MHz on this specific model. It features 64 SPUs along with 32 TAUs and 16 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 8400 GS 512MB 40 Watts
GeForce 9600 GT 1GB 95 Watts
Difference: 55 Watts (138%)

Memory Bandwidth

The GeForce 9600 GT 1GB should theoretically perform a lot faster than the GeForce 8400 GS 512MB overall. (explain)

GeForce 9600 GT 1GB 57600 MB/sec
GeForce 8400 GS 512MB 6400 MB/sec
Difference: 51200 (800%)

Texel Rate

The GeForce 9600 GT 1GB will be much (about 300%) faster with regards to AF than the GeForce 8400 GS 512MB. (explain)

GeForce 9600 GT 1GB 20800 Mtexels/sec
GeForce 8400 GS 512MB 5200 Mtexels/sec
Difference: 15600 (300%)

Pixel Rate

If running with lots of anti-aliasing is important to you, then the GeForce 9600 GT 1GB is the winner, and very much so. (explain)

GeForce 9600 GT 1GB 10400 Mpixels/sec
GeForce 8400 GS 512MB 2600 Mpixels/sec
Difference: 7800 (300%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Please note that the price comparisons are based on search keywords, and might not be the exact same card listed on this page. We have no control over the accuracy of their search results.

GeForce 8400 GS 512MB

Amazon.com

Other US-based stores

GeForce 9600 GT 1GB

Amazon.com

Other US-based stores

Specifications

Model GeForce 8400 GS 512MB GeForce 9600 GT 1GB
Manufacturer nVidia nVidia
Year June 2007 Feb 2008
Code Name G86 G94a/b
Fab Process 80 nm 65/55 nm
Bus PCIe x16, PCI PCIe x16 2.0
Memory 512 MB 1024 MB
Core Speed 650 MHz 650 MHz
Shader Speed 1100 MHz 1625 MHz
Memory Speed 400 MHz (800 MHz effective) 900 MHz (1800 MHz effective)
Unified Shaders 16 64
Texture Mapping Units 8 32
Render Output Units 4 16
Bus Type DDR2 GDDR3
Bus Width 64-bit 256-bit
DirectX Version DirectX 10 DirectX 10
OpenGL Version OpenGL 3.0 OpenGL 3.0
Power (Max TDP) 40 watts 95 watts
Shader Model 4.0 4.0
Bandwidth 6400 MB/sec 57600 MB/sec
Texel Rate 5200 Mtexels/sec 20800 Mtexels/sec
Pixel Rate 2600 Mpixels/sec 10400 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the largest amount of data (measured in megabytes per second) that can be transported over the external memory interface in one second. The number is calculated by multiplying the card's interface width by its memory speed. If it uses DDR memory, the result should be multiplied by 2 again. If DDR5, multiply by 4 instead. The better the memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are applied in one second. This number is worked out by multiplying the total number of texture units of the card by the core speed of the chip. The better the texel rate, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in one second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics card can possibly record to its local memory in one second - measured in millions of pixels per second. The figure is calculated by multiplying the amount of ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel output rate also depends on lots of other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree