Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 8400 GS 512MB vs GeForce 9600 GT 1GB

Intro

The GeForce 8400 GS 512MB features a GPU core clock speed of 650 MHz, and the 512 MB of DDR2 memory runs at 400 MHz through a 64-bit bus. It also is made up of 16 Stream Processors, 8 Texture Address Units, and 4 ROPs.

Compare all of that to the GeForce 9600 GT 1GB, which has core speeds of 650 MHz on the GPU, and 900 MHz on the 1024 MB of GDDR3 memory. It features 64 SPUs along with 32 Texture Address Units and 16 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 8400 GS 512MB 40 Watts
GeForce 9600 GT 1GB 95 Watts
Difference: 55 Watts (138%)

Memory Bandwidth

Performance-wise, the GeForce 9600 GT 1GB should theoretically be much better than the GeForce 8400 GS 512MB overall. (explain)

GeForce 9600 GT 1GB 57600 MB/sec
GeForce 8400 GS 512MB 6400 MB/sec
Difference: 51200 (800%)

Texel Rate

The GeForce 9600 GT 1GB is quite a bit (about 300%) better at texture filtering than the GeForce 8400 GS 512MB. (explain)

GeForce 9600 GT 1GB 20800 Mtexels/sec
GeForce 8400 GS 512MB 5200 Mtexels/sec
Difference: 15600 (300%)

Pixel Rate

If running with a high resolution is important to you, then the GeForce 9600 GT 1GB is the winner, by a large margin. (explain)

GeForce 9600 GT 1GB 10400 Mpixels/sec
GeForce 8400 GS 512MB 2600 Mpixels/sec
Difference: 7800 (300%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Please note that the price comparisons are based on search keywords, and might not be the exact same card listed on this page. We have no control over the accuracy of their search results.

GeForce 8400 GS 512MB

Amazon.com

Other US-based stores

GeForce 9600 GT 1GB

Amazon.com

Other US-based stores

Specifications

Model GeForce 8400 GS 512MB GeForce 9600 GT 1GB
Manufacturer nVidia nVidia
Year June 2007 Feb 2008
Code Name G86 G94a/b
Fab Process 80 nm 65/55 nm
Bus PCIe x16, PCI PCIe x16 2.0
Memory 512 MB 1024 MB
Core Speed 650 MHz 650 MHz
Shader Speed 1100 MHz 1625 MHz
Memory Speed 400 MHz (800 MHz effective) 900 MHz (1800 MHz effective)
Unified Shaders 16 64
Texture Mapping Units 8 32
Render Output Units 4 16
Bus Type DDR2 GDDR3
Bus Width 64-bit 256-bit
DirectX Version DirectX 10 DirectX 10
OpenGL Version OpenGL 3.0 OpenGL 3.0
Power (Max TDP) 40 watts 95 watts
Shader Model 4.0 4.0
Bandwidth 6400 MB/sec 57600 MB/sec
Texel Rate 5200 Mtexels/sec 20800 Mtexels/sec
Pixel Rate 2600 Mpixels/sec 10400 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the largest amount of data (in units of megabytes per second) that can be moved past the external memory interface in a second. It is calculated by multiplying the card's interface width by its memory clock speed. If it uses DDR type memory, the result should be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The higher the card's memory bandwidth, the better the card will be in general. It especially helps with AA, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be processed in one second. This figure is calculated by multiplying the total number of texture units by the core clock speed of the chip. The higher this number, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in one second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics chip can possibly write to the local memory in one second - measured in millions of pixels per second. The number is calculated by multiplying the amount of Render Output Units by the the core clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate also depends on quite a few other factors, most notably the memory bandwidth - the lower the bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree