Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce 8800 GTX vs GeForce 8800 Ultra

Intro

The GeForce 8800 GTX has a GPU core clock speed of 575 MHz, and the 768 MB of GDDR3 memory runs at 900 MHz through a 384-bit bus. It also is made up of 128 SPUs, 64 Texture Address Units, and 24 ROPs.

Compare all that to the GeForce 8800 Ultra, which uses a 90 nm design. nVidia has clocked the core frequency at 612 MHz. The GDDR3 memory is set to run at a speed of 1080 MHz on this particular card. It features 128 SPUs along with 64 Texture Address Units and 24 Rasterization Operator Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 8800 GTX 155 Watts
GeForce 8800 Ultra 171 Watts
Difference: 16 Watts (10%)

Memory Bandwidth

As far as performance goes, the GeForce 8800 Ultra should in theory be a small bit better than the GeForce 8800 GTX overall. (explain)

GeForce 8800 Ultra 103680 MB/sec
GeForce 8800 GTX 86400 MB/sec
Difference: 17280 (20%)

Texel Rate

The GeForce 8800 Ultra is a small bit (about 6%) more effective at AF than the GeForce 8800 GTX. (explain)

GeForce 8800 Ultra 39168 Mtexels/sec
GeForce 8800 GTX 36800 Mtexels/sec
Difference: 2368 (6%)

Pixel Rate

If running with a high screen resolution is important to you, then the GeForce 8800 Ultra is a better choice, but it probably won't make a huge difference. (explain)

GeForce 8800 Ultra 14688 Mpixels/sec
GeForce 8800 GTX 13800 Mpixels/sec
Difference: 888 (6%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 8800 GTX

Amazon.com

GeForce 8800 Ultra

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 8800 GTX GeForce 8800 Ultra
Manufacturer nVidia nVidia
Year Nov 2006 May 2007
Code Name G80 G80
Memory 768 MB 768 MB
Core Speed 575 MHz 612 MHz
Memory Speed 1800 MHz 2160 MHz
Power (Max TDP) 155 watts 171 watts
Bandwidth 86400 MB/sec 103680 MB/sec
Texel Rate 36800 Mtexels/sec 39168 Mtexels/sec
Pixel Rate 13800 Mpixels/sec 14688 Mpixels/sec
Unified Shaders 128 128
Texture Mapping Units 64 64
Render Output Units 24 24
Bus Type GDDR3 GDDR3
Bus Width 384-bit 384-bit
Fab Process 90 nm 90 nm
Transistors 681 million 681 million
Bus PCIe x16 PCIe x16
DirectX Version DirectX 10 DirectX 10
OpenGL Version OpenGL 3.0 OpenGL 3.0

Memory Bandwidth: Memory bandwidth is the maximum amount of information (counted in MB per second) that can be transported past the external memory interface in a second. It is calculated by multiplying the bus width by its memory clock speed. If it uses DDR type memory, it must be multiplied by 2 once again. If DDR5, multiply by ANOTHER 2x. The better the memory bandwidth, the better the card will be in general. It especially helps with AA, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be applied per second. This figure is calculated by multiplying the total texture units of the card by the core clock speed of the chip. The better this number, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the most pixels the graphics card could possibly record to the local memory in one second - measured in millions of pixels per second. The number is calculated by multiplying the number of Render Output Units by the the card's clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate also depends on quite a few other factors, most notably the memory bandwidth - the lower the bandwidth is, the lower the potential to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]