Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 8800 GTX vs GeForce 8800 Ultra

Intro

The GeForce 8800 GTX features a clock frequency of 575 MHz and a GDDR3 memory speed of 900 MHz. It also makes use of a 384-bit memory bus, and uses a 90 nm design. It is comprised of 128 SPUs, 64 TAUs, and 24 Raster Operation Units.

Compare that to the GeForce 8800 Ultra, which uses a 90 nm design. nVidia has clocked the core speed at 612 MHz. The GDDR3 RAM works at a frequency of 1080 MHz on this model. It features 128 SPUs as well as 64 TAUs and 24 ROPs.

F.E.A.R. 2

Settings: Maximum Quality
AA: 4x
AF: 8x
Resolution: 1920x1200
Test Machine: Unknown (Source)
GeForce 8800 Ultra 46 FPS
GeForce 8800 GTX 42 FPS
Difference: 4 FPS (10%)

Fallout 3

Settings: Very High Quality
AA: 8x
AF: 16x
Resolution: 1920x1200
Test Machine: Tom's Hardware Test Machine (Source)
GeForce 8800 Ultra 45 FPS
GeForce 8800 GTX 21 FPS
Difference: 24 FPS (114%)

Fallout 3

Settings: Very High Quality
AA: 4x
AF: 8x
Resolution: 1680x1050
Test Machine: Tom's Hardware Charts Test Rig (Source)
GeForce 8800 Ultra 67 FPS
GeForce 8800 GTX 54 FPS
Difference: 13 FPS (24%)

Far Cry 2

Settings: Very High Qualty
AA: none
AF: none
Resolution: 1920x1200
Test Machine: Intel Core i7-920,3 x 2 GB Ram,Windows Vista Ultimate 32 Bit SP1 (Source)
GeForce 8800 Ultra 45 FPS
GeForce 8800 GTX 40 FPS
Difference: 5 FPS (13%)

Left4Dead

Settings: Very High Quality
AA: 8x
AF: 16x
Resolution: 1920x1200
Test Machine: Tom's Hardware Test Machine (Source)
GeForce 8800 Ultra 49 FPS
GeForce 8800 GTX 43 FPS
Difference: 6 FPS (14%)

Left4Dead

Settings: Very High Quality
AA: 4x
AF: 8x
Resolution: 1920x1200
Test Machine: Tom's Hardware Charts Test Rig (Source)
GeForce 8800 Ultra 59 FPS
GeForce 8800 GTX 53 FPS
Difference: 6 FPS (11%)

Tom Clancy's Endwar

Settings: High Quality
AA: 4x
AF: 8x
Resolution: 1920x1200
Test Machine: Tom's Hardware Test Machine (Source)
GeForce 8800 Ultra 20 FPS
GeForce 8800 GTX 17 FPS
Difference: 3 FPS (18%)

Tom Clancy's H.A.W.X

Settings: High Quality
AA: 4x
AF: 8x
Resolution: 1680x1050
Test Machine: Tom's Hardware Charts Test Rig (Source)
GeForce 8800 GTX 40 FPS
GeForce 8800 Ultra 39 FPS
Difference: 1 FPS (3%)

GeForce 8800 Ultra wins

(Based entirely on the benchmarks listed above)

When combining all game benchmark scores on this page together, the GeForce 8800 Ultra wins overall, by 84 FPS. Please note that we do not have the results of every benchmark ever done for these cards, so the results may differ wildly in different games.

GeForce 8800 Ultra 415 FPS
GeForce 8800 GTX 331 FPS
Difference: 84 FPS (25%)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 8800 GTX 155 Watts
GeForce 8800 Ultra 171 Watts
Difference: 16 Watts (10%)

Memory Bandwidth

The GeForce 8800 Ultra, in theory, should perform a small bit faster than the GeForce 8800 GTX overall. (explain)

GeForce 8800 Ultra 103680 MB/sec
GeForce 8800 GTX 86400 MB/sec
Difference: 17280 (20%)

Texel Rate

The GeForce 8800 Ultra will be a bit (about 6%) faster with regards to anisotropic filtering than the GeForce 8800 GTX. (explain)

GeForce 8800 Ultra 39168 Mtexels/sec
GeForce 8800 GTX 36800 Mtexels/sec
Difference: 2368 (6%)

Pixel Rate

If running with high levels of AA is important to you, then the GeForce 8800 Ultra is superior to the GeForce 8800 GTX, but only just. (explain)

GeForce 8800 Ultra 14688 Mpixels/sec
GeForce 8800 GTX 13800 Mpixels/sec
Difference: 888 (6%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce 8800 GTX

Amazon.com

GeForce 8800 Ultra

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce 8800 GTX GeForce 8800 Ultra
Manufacturer nVidia nVidia
Year Nov 2006 May 2007
Code Name G80 G80
Fab Process 90 nm 90 nm
Bus PCIe x16 PCIe x16
Memory 768 MB 768 MB
Core Speed 575 MHz 612 MHz
Shader Speed 1350 MHz 1500 MHz
Memory Speed 900 MHz (1800 MHz effective) 1080 MHz (2160 MHz effective)
Unified Shaders 128 128
Texture Mapping Units 64 64
Render Output Units 24 24
Bus Type GDDR3 GDDR3
Bus Width 384-bit 384-bit
DirectX Version DirectX 10 DirectX 10
OpenGL Version OpenGL 3.0 OpenGL 3.0
Power (Max TDP) 155 watts 171 watts
Shader Model 4.0 4.0
Bandwidth 86400 MB/sec 103680 MB/sec
Texel Rate 36800 Mtexels/sec 39168 Mtexels/sec
Pixel Rate 13800 Mpixels/sec 14688 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the largest amount of information (counted in megabytes per second) that can be moved past the external memory interface in a second. It is worked out by multiplying the interface width by the speed of its memory. In the case of DDR memory, the result should be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The higher the bandwidth is, the better the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be processed in one second. This number is worked out by multiplying the total amount of texture units by the core clock speed of the chip. The better the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the maximum amount of pixels the graphics card can possibly write to its local memory in one second - measured in millions of pixels per second. The figure is calculated by multiplying the number of colour ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel output rate also depends on lots of other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the ability to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree