Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 8400 GS 512MB vs GeForce 9500 GT DDR2

Intro

The GeForce 8400 GS 512MB has a GPU clock speed of 650 MHz, and the 512 MB of DDR2 RAM runs at 400 MHz through a 64-bit bus. It also is comprised of 16 SPUs, 8 Texture Address Units, and 4 ROPs.

Compare all that to the GeForce 9500 GT DDR2, which makes use of a 65 nm design. nVidia has clocked the core speed at 550 MHz. The DDR2 memory runs at a speed of 500 MHz on this model. It features 32 SPUs as well as 16 Texture Address Units and 8 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 8400 GS 512MB 40 Watts
GeForce 9500 GT DDR2 50 Watts
Difference: 10 Watts (25%)

Memory Bandwidth

The GeForce 9500 GT DDR2, in theory, should be quite a bit faster than the GeForce 8400 GS 512MB in general. (explain)

GeForce 9500 GT DDR2 16000 MB/sec
GeForce 8400 GS 512MB 6400 MB/sec
Difference: 9600 (150%)

Texel Rate

The GeForce 9500 GT DDR2 will be quite a bit (more or less 69%) more effective at AF than the GeForce 8400 GS 512MB. (explain)

GeForce 9500 GT DDR2 8800 Mtexels/sec
GeForce 8400 GS 512MB 5200 Mtexels/sec
Difference: 3600 (69%)

Pixel Rate

The GeForce 9500 GT DDR2 should be a lot (approximately 69%) better at full screen anti-aliasing than the GeForce 8400 GS 512MB, and also capable of handling higher resolutions more effectively. (explain)

GeForce 9500 GT DDR2 4400 Mpixels/sec
GeForce 8400 GS 512MB 2600 Mpixels/sec
Difference: 1800 (69%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce 8400 GS 512MB

Amazon.com

GeForce 9500 GT DDR2

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce 8400 GS 512MB GeForce 9500 GT DDR2
Manufacturer nVidia nVidia
Year June 2007 July 2008
Code Name G86 G96a
Fab Process 80 nm 65 nm
Bus PCIe x16, PCI PCIe x16 2.0, PCI
Memory 512 MB 256 MB
Core Speed 650 MHz 550 MHz
Shader Speed 1100 MHz 1400 MHz
Memory Speed 400 MHz (800 MHz effective) 500 MHz (1000 MHz effective)
Unified Shaders 16 32
Texture Mapping Units 8 16
Render Output Units 4 8
Bus Type DDR2 DDR2
Bus Width 64-bit 128-bit
DirectX Version DirectX 10 DirectX 10
OpenGL Version OpenGL 3.0 OpenGL 3.0
Power (Max TDP) 40 watts 50 watts
Shader Model 4.0 4.0
Bandwidth 6400 MB/sec 16000 MB/sec
Texel Rate 5200 Mtexels/sec 8800 Mtexels/sec
Pixel Rate 2600 Mpixels/sec 4400 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of information (counted in megabytes per second) that can be transported across the external memory interface in one second. The number is calculated by multiplying the interface width by its memory speed. In the case of DDR type memory, it should be multiplied by 2 once again. If DDR5, multiply by ANOTHER 2x. The better the bandwidth is, the better the card will be in general. It especially helps with AA, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are processed in one second. This number is worked out by multiplying the total texture units of the card by the core speed of the chip. The higher the texel rate, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics chip can possibly write to the local memory in a second - measured in millions of pixels per second. The figure is worked out by multiplying the amount of Raster Operations Pipelines by the the core speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel rate is also dependant on lots of other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing