Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce 8400 GS 512MB vs GeForce 9500 GT DDR2

Intro

The GeForce 8400 GS 512MB features a clock speed of 650 MHz and a DDR2 memory speed of 400 MHz. It also makes use of a 64-bit bus, and makes use of a 80 nm design. It is comprised of 16 SPUs, 8 Texture Address Units, and 4 ROPs.

Compare those specs to the GeForce 9500 GT DDR2, which has GPU core speed of 550 MHz, and 256 MB of DDR2 RAM running at 500 MHz through a 128-bit bus. It also is made up of 32 Stream Processors, 16 Texture Address Units, and 8 Raster Operation Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 8400 GS 512MB 40 Watts
GeForce 9500 GT DDR2 50 Watts
Difference: 10 Watts (25%)

Memory Bandwidth

The GeForce 9500 GT DDR2 should in theory perform much faster than the GeForce 8400 GS 512MB in general. (explain)

GeForce 9500 GT DDR2 16000 MB/sec
GeForce 8400 GS 512MB 6400 MB/sec
Difference: 9600 (150%)

Texel Rate

The GeForce 9500 GT DDR2 is quite a bit (more or less 69%) more effective at texture filtering than the GeForce 8400 GS 512MB. (explain)

GeForce 9500 GT DDR2 8800 Mtexels/sec
GeForce 8400 GS 512MB 5200 Mtexels/sec
Difference: 3600 (69%)

Pixel Rate

If using a high resolution is important to you, then the GeForce 9500 GT DDR2 is superior to the GeForce 8400 GS 512MB, by far. (explain)

GeForce 9500 GT DDR2 4400 Mpixels/sec
GeForce 8400 GS 512MB 2600 Mpixels/sec
Difference: 1800 (69%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 8400 GS 512MB

Amazon.com

GeForce 9500 GT DDR2

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 8400 GS 512MB GeForce 9500 GT DDR2
Manufacturer nVidia nVidia
Year June 2007 July 2008
Code Name G86 G96a
Memory 512 MB 256 MB
Core Speed 650 MHz 550 MHz
Memory Speed 800 MHz 1000 MHz
Power (Max TDP) 40 watts 50 watts
Bandwidth 6400 MB/sec 16000 MB/sec
Texel Rate 5200 Mtexels/sec 8800 Mtexels/sec
Pixel Rate 2600 Mpixels/sec 4400 Mpixels/sec
Unified Shaders 16 32
Texture Mapping Units 8 16
Render Output Units 4 8
Bus Type DDR2 DDR2
Bus Width 64-bit 128-bit
Fab Process 80 nm 65 nm
Transistors 210 million 314 million
Bus PCIe x16, PCI PCIe x16 2.0, PCI
DirectX Version DirectX 10 DirectX 10
OpenGL Version OpenGL 3.0 OpenGL 3.0

Memory Bandwidth: Memory bandwidth is the largest amount of information (in units of MB per second) that can be moved across the external memory interface in a second. It is calculated by multiplying the card's bus width by its memory clock speed. If it uses DDR RAM, it must be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The better the bandwidth is, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be processed in one second. This is calculated by multiplying the total texture units by the core clock speed of the chip. The higher the texel rate, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the most pixels that the graphics chip can possibly record to the local memory in a second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the number of Raster Operations Pipelines by the the card's clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate also depends on lots of other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]