Compare any two graphics cards:
VS

GeForce GT 1030 vs Radeon HD 3870 512MB

Intro

The GeForce GT 1030 makes use of a 16 nm design. nVidia has clocked the core speed at 1265 MHz. The GDDR5 memory is set to run at a speed of 1502 MHz on this specific model. It features 384 SPUs along with 32 Texture Address Units and 16 Rasterization Operator Units.

Compare all that to the Radeon HD 3870 512MB, which comes with core clock speeds of 775 MHz on the GPU, and 900 MHz on the 512 MB of GDDR3 memory. It features 320(64x5) SPUs as well as 16 TAUs and 16 Rasterization Operator Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 1030 30 Watts
Radeon HD 3870 512MB 106 Watts
Difference: 76 Watts (253%)

Memory Bandwidth

Theoretically speaking, the Radeon HD 3870 512MB will be 17% faster than the GeForce GT 1030 overall, due to its higher data rate. (explain)

Radeon HD 3870 512MB 57600 MB/sec
GeForce GT 1030 49152 MB/sec
Difference: 8448 (17%)

Texel Rate

The GeForce GT 1030 is a lot (more or less 226%) more effective at anisotropic filtering than the Radeon HD 3870 512MB. (explain)

GeForce GT 1030 40480 Mtexels/sec
Radeon HD 3870 512MB 12400 Mtexels/sec
Difference: 28080 (226%)

Pixel Rate

If running with high levels of AA is important to you, then the GeForce GT 1030 is a better choice, and very much so. (explain)

GeForce GT 1030 20240 Mpixels/sec
Radeon HD 3870 512MB 12400 Mpixels/sec
Difference: 7840 (63%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GT 1030

Amazon.com

Check prices at:

Radeon HD 3870 512MB

Amazon.com

Check prices at:

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GT 1030 Radeon HD 3870 512MB
Manufacturer nVidia AMD
Year May 2017 Nov 19, 2007
Code Name GP108-300 RV670 XT
Memory 2048 MB 512 MB
Core Speed 1265 MHz 775 MHz
Memory Speed 6008 MHz 1800 MHz
Power (Max TDP) 30 watts 106 watts
Bandwidth 49152 MB/sec 57600 MB/sec
Texel Rate 40480 Mtexels/sec 12400 Mtexels/sec
Pixel Rate 20240 Mpixels/sec 12400 Mpixels/sec
Unified Shaders 384 320(64x5)
Texture Mapping Units 32 16
Render Output Units 16 16
Bus Type GDDR5 GDDR3
Bus Width 64-bit 256-bit
Fab Process 16 nm 55 nm
Transistors 3300 million (Unknown) million
Bus PCIe 3.0 x16 PCIe 2.0 x16/AGP 8x
DirectX Version DirectX 12.0 DirectX 10.1
OpenGL Version OpenGL 4.5 OpenGL 3.0

Memory Bandwidth: Memory bandwidth is the maximum amount of data (in units of MB per second) that can be transported past the external memory interface in one second. It is worked out by multiplying the card's bus width by its memory clock speed. If it uses DDR RAM, the result should be multiplied by 2 again. If DDR5, multiply by 4 instead. The better the memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied in one second. This figure is calculated by multiplying the total number of texture units by the core speed of the chip. The better the texel rate, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in one second.

Pixel Rate: Pixel rate is the maximum number of pixels the graphics card could possibly record to the local memory in a second - measured in millions of pixels per second. The number is calculated by multiplying the number of ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate is also dependant on quite a few other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to reach the max fill rate.

Display Prices

Hide Prices

GeForce GT 1030

Amazon.com

Check prices at:

Radeon HD 3870 512MB

Amazon.com

Check prices at:

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *


*

WordPress Anti Spam by WP-SpamShield