Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTX 1050 vs GeForce GTX 260 216SP 55 nm

Intro

The GeForce GTX 1050 features a GPU core clock speed of 1354 MHz, and the 2048 MB of GDDR5 memory runs at 1750 MHz through a 128-bit bus. It also features 640 SPUs, 40 Texture Address Units, and 32 Raster Operation Units.

Compare all that to the GeForce GTX 260 216SP 55 nm, which has GPU clock speed of 576 MHz, and 896 MB of GDDR3 memory set to run at 999 MHz through a 448-bit bus. It also is comprised of 216 SPUs, 72 Texture Address Units, and 28 Raster Operation Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 1050 75 Watts
GeForce GTX 260 216SP 55 nm 171 Watts
Difference: 96 Watts (128%)

Memory Bandwidth

In theory, the GeForce GTX 1050 is 3% quicker than the GeForce GTX 260 216SP 55 nm in general, because of its higher bandwidth. (explain)

GeForce GTX 1050 114688 MB/sec
GeForce GTX 260 216SP 55 nm 111888 MB/sec
Difference: 2800 (3%)

Texel Rate

The GeForce GTX 1050 is much (about 31%) more effective at AF than the GeForce GTX 260 216SP 55 nm. (explain)

GeForce GTX 1050 54160 Mtexels/sec
GeForce GTX 260 216SP 55 nm 41472 Mtexels/sec
Difference: 12688 (31%)

Pixel Rate

The GeForce GTX 1050 is quite a bit (about 169%) more effective at FSAA than the GeForce GTX 260 216SP 55 nm, and also capable of handling higher resolutions while still performing well. (explain)

GeForce GTX 1050 43328 Mpixels/sec
GeForce GTX 260 216SP 55 nm 16128 Mpixels/sec
Difference: 27200 (169%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 1050

Amazon.com

Check prices at:

GeForce GTX 260 216SP 55 nm

Amazon.com

Check prices at:

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 1050 GeForce GTX 260 216SP 55 nm
Manufacturer nVidia nVidia
Year October 2016 December 22, 2008
Code Name GP107-300 G200b
Memory 2048 MB 896 MB
Core Speed 1354 MHz 576 MHz
Memory Speed 7000 MHz 1998 MHz
Power (Max TDP) 75 watts 171 watts
Bandwidth 114688 MB/sec 111888 MB/sec
Texel Rate 54160 Mtexels/sec 41472 Mtexels/sec
Pixel Rate 43328 Mpixels/sec 16128 Mpixels/sec
Unified Shaders 640 216
Texture Mapping Units 40 72
Render Output Units 32 28
Bus Type GDDR5 GDDR3
Bus Width 128-bit 448-bit
Fab Process 14 nm 55 nm
Transistors 3300 million 1400 million
Bus PCIe 3.0 x16 PCIe x16 2.0
DirectX Version DirectX 12.0 DirectX 10
OpenGL Version OpenGL 4.5 OpenGL 3.1

Memory Bandwidth: Bandwidth is the max amount of information (counted in MB per second) that can be transported across the external memory interface in a second. The number is worked out by multiplying the card's interface width by the speed of its memory. If the card has DDR type RAM, it must be multiplied by 2 once again. If it uses DDR5, multiply by 4 instead. The better the memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are processed in one second. This is worked out by multiplying the total amount of texture units of the card by the core speed of the chip. The higher the texel rate, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the most pixels that the graphics chip could possibly record to the local memory per second - measured in millions of pixels per second. The number is calculated by multiplying the number of Raster Operations Pipelines by the the core speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel rate is also dependant on quite a few other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to get to the maximum fill rate.

Display Prices

Hide Prices

GeForce GTX 1050

Amazon.com

Check prices at:

GeForce GTX 260 216SP 55 nm

Amazon.com

Check prices at:

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *


*

WordPress Anti-Spam by WP-SpamShield