Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTX 260 vs Radeon HD 4890 1GB

Intro

The GeForce GTX 260 comes with a GPU clock speed of 576 MHz, and the 896 MB of GDDR3 memory runs at 999 MHz through a 448-bit bus. It also features 192 SPUs, 64 Texture Address Units, and 28 Raster Operation Units.

Compare all of that to the Radeon HD 4890 1GB, which comes with a core clock speed of 1000 MHz and a GDDR5 memory frequency of 975 MHz. It also makes use of a 256-bit bus, and uses a 55 nm design. It is made up of 800(160x5) SPUs, 40 Texture Address Units, and 16 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 260 182 Watts
Radeon HD 4890 1GB 190 Watts
Difference: 8 Watts (4%)

Memory Bandwidth

In theory, the Radeon HD 4890 1GB should be a small bit faster than the GeForce GTX 260 overall. (explain)

Radeon HD 4890 1GB 124800 MB/sec
GeForce GTX 260 111888 MB/sec
Difference: 12912 (12%)

Texel Rate

The Radeon HD 4890 1GB will be a bit (approximately 9%) faster with regards to anisotropic filtering than the GeForce GTX 260. (explain)

Radeon HD 4890 1GB 40000 Mtexels/sec
GeForce GTX 260 36864 Mtexels/sec
Difference: 3136 (9%)

Pixel Rate

If running with a high resolution is important to you, then the GeForce GTX 260 is a better choice, not by a very large margin though. (explain)

GeForce GTX 260 16128 Mpixels/sec
Radeon HD 4890 1GB 16000 Mpixels/sec
Difference: 128 (1%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 260

Amazon.com

Radeon HD 4890 1GB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 260 Radeon HD 4890 1GB
Manufacturer nVidia AMD
Year June 16, 2008 Apr 2, 2009
Code Name G200 RV790 XT
Memory 896 MB 1024 MB
Core Speed 576 MHz 1000 MHz
Memory Speed 1998 MHz 3900 MHz
Power (Max TDP) 182 watts 190 watts
Bandwidth 111888 MB/sec 124800 MB/sec
Texel Rate 36864 Mtexels/sec 40000 Mtexels/sec
Pixel Rate 16128 Mpixels/sec 16000 Mpixels/sec
Unified Shaders 192 800(160x5)
Texture Mapping Units 64 40
Render Output Units 28 16
Bus Type GDDR3 GDDR5
Bus Width 448-bit 256-bit
Fab Process 65 nm 55 nm
Transistors 1400 million 959 million
Bus PCIe x16 2.0 PCIe 2.0 x16
DirectX Version DirectX 10 DirectX 10.1
OpenGL Version OpenGL 3.1 OpenGL 3.0

Memory Bandwidth: Bandwidth is the largest amount of information (counted in megabytes per second) that can be moved past the external memory interface in one second. The number is worked out by multiplying the card's interface width by its memory speed. In the case of DDR type RAM, it must be multiplied by 2 once again. If DDR5, multiply by ANOTHER 2x. The higher the memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be processed in one second. This figure is calculated by multiplying the total texture units by the core speed of the chip. The higher the texel rate, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the maximum amount of pixels the video card can possibly write to the local memory in a second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the amount of Raster Operations Pipelines by the clock speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate also depends on quite a few other factors, most notably the memory bandwidth - the lower the bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]