Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTX 260 vs Radeon HD 4890 1GB

Intro

The GeForce GTX 260 comes with a GPU clock speed of 576 MHz, and the 896 MB of GDDR3 RAM is set to run at 999 MHz through a 448-bit bus. It also is made up of 192 SPUs, 64 TAUs, and 28 ROPs.

Compare those specs to the Radeon HD 4890 1GB, which comes with core clock speeds of 1000 MHz on the GPU, and 975 MHz on the 1024 MB of GDDR5 memory. It features 800(160x5) SPUs along with 40 TAUs and 16 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 260 182 Watts
Radeon HD 4890 1GB 190 Watts
Difference: 8 Watts (4%)

Memory Bandwidth

Theoretically speaking, the Radeon HD 4890 1GB should perform a little bit faster than the GeForce GTX 260 overall. (explain)

Radeon HD 4890 1GB 124800 MB/sec
GeForce GTX 260 111888 MB/sec
Difference: 12912 (12%)

Texel Rate

The Radeon HD 4890 1GB should be a small bit (more or less 9%) better at AF than the GeForce GTX 260. (explain)

Radeon HD 4890 1GB 40000 Mtexels/sec
GeForce GTX 260 36864 Mtexels/sec
Difference: 3136 (9%)

Pixel Rate

The GeForce GTX 260 should be just a bit (about 1%) faster with regards to full screen anti-aliasing than the Radeon HD 4890 1GB, and will be capable of handling higher screen resolutions more effectively. (explain)

GeForce GTX 260 16128 Mpixels/sec
Radeon HD 4890 1GB 16000 Mpixels/sec
Difference: 128 (1%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 260

Amazon.com

Radeon HD 4890 1GB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 260 Radeon HD 4890 1GB
Manufacturer nVidia AMD
Year June 16, 2008 Apr 2, 2009
Code Name G200 RV790 XT
Memory 896 MB 1024 MB
Core Speed 576 MHz 1000 MHz
Memory Speed 1998 MHz 3900 MHz
Power (Max TDP) 182 watts 190 watts
Bandwidth 111888 MB/sec 124800 MB/sec
Texel Rate 36864 Mtexels/sec 40000 Mtexels/sec
Pixel Rate 16128 Mpixels/sec 16000 Mpixels/sec
Unified Shaders 192 800(160x5)
Texture Mapping Units 64 40
Render Output Units 28 16
Bus Type GDDR3 GDDR5
Bus Width 448-bit 256-bit
Fab Process 65 nm 55 nm
Transistors 1400 million 959 million
Bus PCIe x16 2.0 PCIe 2.0 x16
DirectX Version DirectX 10 DirectX 10.1
OpenGL Version OpenGL 3.1 OpenGL 3.0

Memory Bandwidth: Bandwidth is the max amount of data (in units of megabytes per second) that can be transported over the external memory interface within a second. It is worked out by multiplying the card's interface width by its memory clock speed. If it uses DDR memory, the result should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The better the memory bandwidth, the better the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are processed in one second. This figure is worked out by multiplying the total texture units of the card by the core clock speed of the chip. The higher the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the maximum number of pixels the video card can possibly record to its local memory in one second - measured in millions of pixels per second. The number is calculated by multiplying the number of Raster Operations Pipelines by the the core clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate is also dependant on quite a few other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the ability to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]