Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce 8800 Ultra vs GeForce GTX 260 Core 216

Intro

The GeForce 8800 Ultra uses a 90 nm design. nVidia has set the core frequency at 612 MHz. The GDDR3 RAM is set to run at a frequency of 1080 MHz on this particular card. It features 128 SPUs as well as 64 Texture Address Units and 24 Rasterization Operator Units.

Compare all of that to the GeForce GTX 260 Core 216, which features clock speeds of 576 MHz on the GPU, and 999 MHz on the 896 MB of GDDR3 memory. It features 216 SPUs as well as 72 TAUs and 28 Rasterization Operator Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 8800 Ultra 171 Watts
GeForce GTX 260 Core 216 202 Watts
Difference: 31 Watts (18%)

Memory Bandwidth

As far as performance goes, the GeForce GTX 260 Core 216 should theoretically be a little bit better than the GeForce 8800 Ultra in general. (explain)

GeForce GTX 260 Core 216 111888 MB/sec
GeForce 8800 Ultra 103680 MB/sec
Difference: 8208 (8%)

Texel Rate

The GeForce GTX 260 Core 216 will be just a bit (more or less 6%) better at texture filtering than the GeForce 8800 Ultra. (explain)

GeForce GTX 260 Core 216 41472 Mtexels/sec
GeForce 8800 Ultra 39168 Mtexels/sec
Difference: 2304 (6%)

Pixel Rate

The GeForce GTX 260 Core 216 should be a small bit (more or less 10%) faster with regards to AA than the GeForce 8800 Ultra, and should be capable of handling higher screen resolutions while still performing well. (explain)

GeForce GTX 260 Core 216 16128 Mpixels/sec
GeForce 8800 Ultra 14688 Mpixels/sec
Difference: 1440 (10%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 8800 Ultra

Amazon.com

Check prices at:

GeForce GTX 260 Core 216

Amazon.com

Check prices at:

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 8800 Ultra GeForce GTX 260 Core 216
Manufacturer nVidia nVidia
Year May 2007 September 16, 2008
Code Name G80 G200
Memory 768 MB 896 MB
Core Speed 612 MHz 576 MHz
Memory Speed 2160 MHz 1998 MHz
Power (Max TDP) 171 watts 202 watts
Bandwidth 103680 MB/sec 111888 MB/sec
Texel Rate 39168 Mtexels/sec 41472 Mtexels/sec
Pixel Rate 14688 Mpixels/sec 16128 Mpixels/sec
Unified Shaders 128 216
Texture Mapping Units 64 72
Render Output Units 24 28
Bus Type GDDR3 GDDR3
Bus Width 384-bit 448-bit
Fab Process 90 nm 65 nm
Transistors 681 million 1400 million
Bus PCIe x16 PCIe x16 2.0
DirectX Version DirectX 10 DirectX 10
OpenGL Version OpenGL 3.0 OpenGL 3.1

Memory Bandwidth: Bandwidth is the max amount of data (measured in MB per second) that can be transported over the external memory interface in a second. It is calculated by multiplying the bus width by its memory clock speed. If the card has DDR type memory, it must be multiplied by 2 once again. If DDR5, multiply by 4 instead. The better the bandwidth is, the faster the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be applied in one second. This is worked out by multiplying the total texture units by the core speed of the chip. The higher the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the maximum amount of pixels the video card could possibly record to the local memory per second - measured in millions of pixels per second. The figure is calculated by multiplying the amount of colour ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate is also dependant on many other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to get to the max fill rate.

Display Prices

Hide Prices

GeForce 8800 Ultra

Amazon.com

Check prices at:

GeForce GTX 260 Core 216

Amazon.com

Check prices at:

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Comments

One Response to “GeForce 8800 Ultra vs GeForce GTX 260 Core 216”
badboy says:

I have both the GTX 260 is better I like the 448 bit vrom the GTX 260

Your email address will not be published. Required fields are marked *


*

WordPress Anti Spam by WP-SpamShield