Join Us On Facebook

Compare any two graphics cards:
VS

Radeon HD 7870 vs Radeon R9 270

Intro

The Radeon HD 7870 comes with a GPU clock speed of 1000 MHz, and the 2048 MB of GDDR5 memory is set to run at 1200 MHz through a 256-bit bus. It also features 1280 Stream Processors, 80 TAUs, and 32 ROPs.

Compare those specs to the Radeon R9 270, which has a GPU core clock speed of 900 MHz, and 2048 MB of GDDR5 memory set to run at 1400 MHz through a 256-bit bus. It also is comprised of 1280 Stream Processors, 80 TAUs, and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon R9 270 150 Watts
Radeon HD 7870 175 Watts
Difference: 25 Watts (17%)

Memory Bandwidth

Theoretically speaking, the Radeon R9 270 will be 17% quicker than the Radeon HD 7870 in general, because of its greater data rate. (explain)

Radeon R9 270 179200 MB/sec
Radeon HD 7870 153600 MB/sec
Difference: 25600 (17%)

Texel Rate

The Radeon HD 7870 is a small bit (about 11%) better at anisotropic filtering than the Radeon R9 270. (explain)

Radeon HD 7870 80000 Mtexels/sec
Radeon R9 270 72000 Mtexels/sec
Difference: 8000 (11%)

Pixel Rate

The Radeon HD 7870 will be a small bit (approximately 11%) more effective at FSAA than the Radeon R9 270, and should be able to handle higher resolutions without slowing down too much. (explain)

Radeon HD 7870 32000 Mpixels/sec
Radeon R9 270 28800 Mpixels/sec
Difference: 3200 (11%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Please note that the price comparisons are based on search keywords, and might not be the exact same card listed on this page. We have no control over the accuracy of their search results.

Radeon HD 7870

Amazon.com

Other US-based stores

Radeon R9 270

Amazon.com

Other US-based stores

Specifications

Model Radeon HD 7870 Radeon R9 270
Manufacturer ATi ATi
Year March 2012 November 2013
Code Name Pitcairn XT Curacao Pro
Fab Process 28 nm 28 nm
Bus PCIe 3.0 x16 PCIe 3.0 x16
Memory 2048 MB 2048 MB
Core Speed 1000 MHz 900 MHz
Shader Speed N/A MHz (N/A) MHz
Memory Speed 1200 MHz (4800 MHz effective) 1400 MHz (5600 MHz effective)
Unified Shaders 1280 1280
Texture Mapping Units 80 80
Render Output Units 32 32
Bus Type GDDR5 GDDR5
Bus Width 256-bit 256-bit
DirectX Version DirectX 11.1 DirectX 11.2
OpenGL Version OpenGL 4.2 OpenGL 4.3
Power (Max TDP) 175 watts 150 watts
Shader Model 5.0 5.0
Bandwidth 153600 MB/sec 179200 MB/sec
Texel Rate 80000 Mtexels/sec 72000 Mtexels/sec
Pixel Rate 32000 Mpixels/sec 28800 Mpixels/sec

Memory Bandwidth: Bandwidth is the maximum amount of data (measured in megabytes per second) that can be transferred over the external memory interface in a second. It is worked out by multiplying the bus width by its memory speed. If the card has DDR type memory, it must be multiplied by 2 once again. If DDR5, multiply by 4 instead. The higher the memory bandwidth, the faster the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be applied in one second. This is calculated by multiplying the total amount of texture units by the core speed of the chip. The better this number, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics chip can possibly write to its local memory per second - measured in millions of pixels per second. The figure is calculated by multiplying the amount of Render Output Units by the the core clock speed. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate also depends on lots of other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the potential to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree