Join Us On Facebook

Compare any two graphics cards:
VS

Radeon HD 7870 vs Radeon R9 270

Intro

The Radeon HD 7870 has a GPU core clock speed of 1000 MHz, and the 2048 MB of GDDR5 RAM runs at 1200 MHz through a 256-bit bus. It also is comprised of 1280 Stream Processors, 80 Texture Address Units, and 32 Raster Operation Units.

Compare all of that to the Radeon R9 270, which has clock speeds of 900 MHz on the GPU, and 1400 MHz on the 2048 MB of GDDR5 memory. It features 1280 SPUs as well as 80 Texture Address Units and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon R9 270 150 Watts
Radeon HD 7870 175 Watts
Difference: 25 Watts (17%)

Memory Bandwidth

In theory, the Radeon R9 270 should perform a small bit faster than the Radeon HD 7870 in general. (explain)

Radeon R9 270 179200 MB/sec
Radeon HD 7870 153600 MB/sec
Difference: 25600 (17%)

Texel Rate

The Radeon HD 7870 will be a small bit (more or less 11%) faster with regards to texture filtering than the Radeon R9 270. (explain)

Radeon HD 7870 80000 Mtexels/sec
Radeon R9 270 72000 Mtexels/sec
Difference: 8000 (11%)

Pixel Rate

The Radeon HD 7870 will be a bit (more or less 11%) better at FSAA than the Radeon R9 270, and able to handle higher resolutions without losing too much performance. (explain)

Radeon HD 7870 32000 Mpixels/sec
Radeon R9 270 28800 Mpixels/sec
Difference: 3200 (11%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Radeon HD 7870

Amazon.com

Radeon R9 270

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model Radeon HD 7870 Radeon R9 270
Manufacturer AMD AMD
Year March 2012 November 2013
Code Name Pitcairn XT Curacao Pro
Fab Process 28 nm 28 nm
Bus PCIe 3.0 x16 PCIe 3.0 x16
Memory 2048 MB 2048 MB
Core Speed 1000 MHz 900 MHz
Shader Speed N/A MHz (N/A) MHz
Memory Speed 1200 MHz (4800 MHz effective) 1400 MHz (5600 MHz effective)
Unified Shaders 1280 1280
Texture Mapping Units 80 80
Render Output Units 32 32
Bus Type GDDR5 GDDR5
Bus Width 256-bit 256-bit
DirectX Version DirectX 11.1 DirectX 11.2
OpenGL Version OpenGL 4.2 OpenGL 4.3
Power (Max TDP) 175 watts 150 watts
Shader Model 5.0 5.0
Bandwidth 153600 MB/sec 179200 MB/sec
Texel Rate 80000 Mtexels/sec 72000 Mtexels/sec
Pixel Rate 32000 Mpixels/sec 28800 Mpixels/sec

Memory Bandwidth: Bandwidth is the maximum amount of information (in units of MB per second) that can be transferred across the external memory interface within a second. The number is calculated by multiplying the card's bus width by the speed of its memory. If it uses DDR type RAM, the result should be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The better the bandwidth is, the faster the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be applied per second. This number is worked out by multiplying the total number of texture units by the core speed of the chip. The better this number, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in one second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics chip can possibly write to the local memory in one second - measured in millions of pixels per second. The number is calculated by multiplying the amount of ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel rate also depends on lots of other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the ability to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree