Join Us On Facebook

Compare any two graphics cards:
VS

Radeon HD 7870 vs Radeon R9 270

Intro

The Radeon HD 7870 features clock speeds of 1000 MHz on the GPU, and 1200 MHz on the 2048 MB of GDDR5 RAM. It features 1280 SPUs as well as 80 Texture Address Units and 32 ROPs.

Compare that to the Radeon R9 270, which comes with GPU core speed of 900 MHz, and 2048 MB of GDDR5 memory set to run at 1400 MHz through a 256-bit bus. It also is made up of 1280 SPUs, 80 TAUs, and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon R9 270 150 Watts
Radeon HD 7870 175 Watts
Difference: 25 Watts (17%)

Memory Bandwidth

As far as performance goes, the Radeon R9 270 should in theory be a bit better than the Radeon HD 7870 in general. (explain)

Radeon R9 270 179200 MB/sec
Radeon HD 7870 153600 MB/sec
Difference: 25600 (17%)

Texel Rate

The Radeon HD 7870 should be just a bit (about 11%) faster with regards to AF than the Radeon R9 270. (explain)

Radeon HD 7870 80000 Mtexels/sec
Radeon R9 270 72000 Mtexels/sec
Difference: 8000 (11%)

Pixel Rate

The Radeon HD 7870 should be just a bit (more or less 11%) faster with regards to AA than the Radeon R9 270, and also able to handle higher screen resolutions while still performing well. (explain)

Radeon HD 7870 32000 Mpixels/sec
Radeon R9 270 28800 Mpixels/sec
Difference: 3200 (11%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Radeon HD 7870

Amazon.com

Radeon R9 270

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model Radeon HD 7870 Radeon R9 270
Manufacturer AMD AMD
Year March 2012 November 2013
Code Name Pitcairn XT Curacao Pro
Fab Process 28 nm 28 nm
Bus PCIe 3.0 x16 PCIe 3.0 x16
Memory 2048 MB 2048 MB
Core Speed 1000 MHz 900 MHz
Shader Speed N/A MHz (N/A) MHz
Memory Speed 1200 MHz (4800 MHz effective) 1400 MHz (5600 MHz effective)
Unified Shaders 1280 1280
Texture Mapping Units 80 80
Render Output Units 32 32
Bus Type GDDR5 GDDR5
Bus Width 256-bit 256-bit
DirectX Version DirectX 11.1 DirectX 11.2
OpenGL Version OpenGL 4.2 OpenGL 4.3
Power (Max TDP) 175 watts 150 watts
Shader Model 5.0 5.0
Bandwidth 153600 MB/sec 179200 MB/sec
Texel Rate 80000 Mtexels/sec 72000 Mtexels/sec
Pixel Rate 32000 Mpixels/sec 28800 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of information (measured in MB per second) that can be transported over the external memory interface in one second. The number is worked out by multiplying the bus width by its memory clock speed. If the card has DDR type memory, the result should be multiplied by 2 once again. If DDR5, multiply by 4 instead. The higher the memory bandwidth, the better the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be applied in one second. This is worked out by multiplying the total texture units by the core speed of the chip. The better the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in one second.

Pixel Rate: Pixel rate is the maximum number of pixels the video card can possibly record to the local memory per second - measured in millions of pixels per second. The number is calculated by multiplying the number of Raster Operations Pipelines by the the core speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate is also dependant on quite a few other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing