Join Us On Facebook

Compare any two graphics cards:
VS

Radeon HD 7850 vs Radeon R9 290

Intro

The Radeon HD 7850 features clock speeds of 860 MHz on the GPU, and 1200 MHz on the 2048 MB of GDDR5 RAM. It features 1024 SPUs as well as 64 Texture Address Units and 32 ROPs.

Compare all of that to the Radeon R9 290, which has a core clock frequency of 800 MHz and a GDDR5 memory speed of 1250 MHz. It also makes use of a 512-bit bus, and makes use of a 28 nm design. It is comprised of 2560 SPUs, 160 TAUs, and 64 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 7850 130 Watts
Radeon R9 290 300 Watts
Difference: 170 Watts (131%)

Memory Bandwidth

Theoretically speaking, the Radeon R9 290 should be much faster than the Radeon HD 7850 in general. (explain)

Radeon R9 290 320000 MB/sec
Radeon HD 7850 153600 MB/sec
Difference: 166400 (108%)

Texel Rate

The Radeon R9 290 will be much (approximately 133%) faster with regards to anisotropic filtering than the Radeon HD 7850. (explain)

Radeon R9 290 128000 Mtexels/sec
Radeon HD 7850 55040 Mtexels/sec
Difference: 72960 (133%)

Pixel Rate

The Radeon R9 290 will be a lot (approximately 86%) more effective at full screen anti-aliasing than the Radeon HD 7850, and also will be able to handle higher resolutions more effectively. (explain)

Radeon R9 290 51200 Mpixels/sec
Radeon HD 7850 27520 Mpixels/sec
Difference: 23680 (86%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Radeon HD 7850

Amazon.com

Radeon R9 290

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model Radeon HD 7850 Radeon R9 290
Manufacturer AMD AMD
Year March 2012 November 2013
Code Name Pitcairn Pro Hawaii PRO
Fab Process 28 nm 28 nm
Bus PCIe 3.0 x16 PCIe 3.0 x16
Memory 2048 MB 4096 MB
Core Speed 860 MHz 800 MHz
Shader Speed N/A MHz (N/A) MHz
Memory Speed 1200 MHz (4800 MHz effective) 1250 MHz (5000 MHz effective)
Unified Shaders 1024 2560
Texture Mapping Units 64 160
Render Output Units 32 64
Bus Type GDDR5 GDDR5
Bus Width 256-bit 512-bit
DirectX Version DirectX 11.1 DirectX 11.2
OpenGL Version OpenGL 4.2 OpenGL 4.3
Power (Max TDP) 130 watts 300 watts
Shader Model 5.0 5.0
Bandwidth 153600 MB/sec 320000 MB/sec
Texel Rate 55040 Mtexels/sec 128000 Mtexels/sec
Pixel Rate 27520 Mpixels/sec 51200 Mpixels/sec

Memory Bandwidth: Bandwidth is the maximum amount of data (in units of MB per second) that can be transported across the external memory interface in one second. It is worked out by multiplying the card's bus width by the speed of its memory. In the case of DDR type RAM, it should be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The higher the memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be applied in one second. This figure is worked out by multiplying the total number of texture units of the card by the core speed of the chip. The better this number, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the most pixels the video card can possibly record to its local memory in a second - measured in millions of pixels per second. The number is calculated by multiplying the amount of Render Output Units by the the core speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate also depends on lots of other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree