Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

Radeon HD 7850 vs Radeon R9 290

Intro

The Radeon HD 7850 has core speeds of 860 MHz on the GPU, and 1200 MHz on the 2048 MB of GDDR5 memory. It features 1024 SPUs along with 64 Texture Address Units and 32 Rasterization Operator Units.

Compare those specifications to the Radeon R9 290, which comes with a clock frequency of 800 MHz and a GDDR5 memory frequency of 1250 MHz. It also makes use of a 512-bit bus, and makes use of a 28 nm design. It features 2560 SPUs, 160 Texture Address Units, and 64 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 7850 130 Watts
Radeon R9 290 300 Watts
Difference: 170 Watts (131%)

Memory Bandwidth

The Radeon R9 290 should in theory perform much faster than the Radeon HD 7850 in general. (explain)

Radeon R9 290 320000 MB/sec
Radeon HD 7850 153600 MB/sec
Difference: 166400 (108%)

Texel Rate

The Radeon R9 290 will be much (approximately 133%) faster with regards to anisotropic filtering than the Radeon HD 7850. (explain)

Radeon R9 290 128000 Mtexels/sec
Radeon HD 7850 55040 Mtexels/sec
Difference: 72960 (133%)

Pixel Rate

The Radeon R9 290 should be quite a bit (approximately 86%) more effective at FSAA than the Radeon HD 7850, and will be able to handle higher resolutions without losing too much performance. (explain)

Radeon R9 290 51200 Mpixels/sec
Radeon HD 7850 27520 Mpixels/sec
Difference: 23680 (86%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

Radeon HD 7850

Amazon.com

Radeon R9 290

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model Radeon HD 7850 Radeon R9 290
Manufacturer AMD AMD
Year March 2012 November 2013
Code Name Pitcairn Pro Hawaii PRO
Memory 2048 MB 4096 MB
Core Speed 860 MHz 800 MHz
Memory Speed 4800 MHz 5000 MHz
Power (Max TDP) 130 watts 300 watts
Bandwidth 153600 MB/sec 320000 MB/sec
Texel Rate 55040 Mtexels/sec 128000 Mtexels/sec
Pixel Rate 27520 Mpixels/sec 51200 Mpixels/sec
Unified Shaders 1024 2560
Texture Mapping Units 64 160
Render Output Units 32 64
Bus Type GDDR5 GDDR5
Bus Width 256-bit 512-bit
Fab Process 28 nm 28 nm
Transistors 2800 million 6200 million
Bus PCIe 3.0 x16 PCIe 3.0 x16
DirectX Version DirectX 11.1 DirectX 11.2
OpenGL Version OpenGL 4.2 OpenGL 4.3

Memory Bandwidth: Memory bandwidth is the maximum amount of information (in units of MB per second) that can be transported past the external memory interface in one second. The number is calculated by multiplying the card's interface width by the speed of its memory. If the card has DDR RAM, it should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The higher the bandwidth is, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be applied per second. This is calculated by multiplying the total number of texture units of the card by the core clock speed of the chip. The higher this number, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the maximum number of pixels the graphics card could possibly write to its local memory in one second - measured in millions of pixels per second. The number is worked out by multiplying the number of colour ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel rate also depends on quite a few other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]