Join Us On Facebook

Compare any two graphics cards:
VS

Radeon HD 5870 vs Radeon R9 280X

Intro

The Radeon HD 5870 uses a 40 nm design. AMD has set the core frequency at 850 MHz. The GDDR5 RAM runs at a frequency of 1200 MHz on this particular card. It features 1600(320x5) SPUs as well as 80 Texture Address Units and 32 Rasterization Operator Units.

Compare those specs to the Radeon R9 280X, which comes with GPU core speed of 850 MHz, and 3072 MB of GDDR5 RAM running at 1500 MHz through a 384-bit bus. It also features 2048 Stream Processors, 128 TAUs, and 32 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 5870 188 Watts
Radeon R9 280X 250 Watts
Difference: 62 Watts (33%)

Memory Bandwidth

Performance-wise, the Radeon R9 280X should theoretically be much better than the Radeon HD 5870 overall. (explain)

Radeon R9 280X 288000 MB/sec
Radeon HD 5870 153600 MB/sec
Difference: 134400 (88%)

Texel Rate

The Radeon R9 280X is much (approximately 60%) faster with regards to anisotropic filtering than the Radeon HD 5870. (explain)

Radeon R9 280X 108800 Mtexels/sec
Radeon HD 5870 68000 Mtexels/sec
Difference: 40800 (60%)

Pixel Rate

Both cards have exactly the same pixel fill rate, so in theory they should perform equally good at at full screen anti-aliasing, and be able to handle the same resolutions. (explain)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Radeon HD 5870

Amazon.com

Radeon R9 280X

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model Radeon HD 5870 Radeon R9 280X
Manufacturer AMD AMD
Year September 23, 2009 October 2013
Code Name Cypress XT Tahiti XTL
Fab Process 40 nm 28 nm
Bus PCIe 2.1 x16 PCIe 3.0 x16
Memory 1024 MB 3072 MB
Core Speed 850 MHz 850 MHz
Shader Speed N/A MHz (N/A) MHz
Memory Speed 1200 MHz (4800 MHz effective) 1500 MHz (6000 MHz effective)
Unified Shaders 1600(320x5) 2048
Texture Mapping Units 80 128
Render Output Units 32 32
Bus Type GDDR5 GDDR5
Bus Width 256-bit 384-bit
DirectX Version DirectX 11 DirectX 11.2
OpenGL Version OpenGL 3.2 OpenGL 4.3
Power (Max TDP) 188 watts 250 watts
Shader Model 5.0 5.0
Bandwidth 153600 MB/sec 288000 MB/sec
Texel Rate 68000 Mtexels/sec 108800 Mtexels/sec
Pixel Rate 27200 Mpixels/sec 27200 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the largest amount of data (counted in MB per second) that can be transported across the external memory interface in a second. It is worked out by multiplying the card's interface width by its memory clock speed. In the case of DDR type memory, it must be multiplied by 2 once again. If it uses DDR5, multiply by 4 instead. The higher the memory bandwidth, the faster the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied in one second. This is calculated by multiplying the total texture units by the core clock speed of the chip. The higher the texel rate, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in a second.

Pixel Rate: Pixel rate is the most pixels the graphics card could possibly write to the local memory in a second - measured in millions of pixels per second. The figure is worked out by multiplying the amount of Render Output Units by the the core speed of the card. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate also depends on lots of other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing