Join Us On Facebook

Compare any two graphics cards:
VS

Radeon HD 5870 vs Radeon R9 280X

Intro

The Radeon HD 5870 makes use of a 40 nm design. AMD has set the core speed at 850 MHz. The GDDR5 RAM is set to run at a frequency of 1200 MHz on this card. It features 1600(320x5) SPUs as well as 80 Texture Address Units and 32 Rasterization Operator Units.

Compare those specifications to the Radeon R9 280X, which comes with core speeds of 850 MHz on the GPU, and 1500 MHz on the 3072 MB of GDDR5 RAM. It features 2048 SPUs as well as 128 Texture Address Units and 32 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 5870 188 Watts
Radeon R9 280X 250 Watts
Difference: 62 Watts (33%)

Memory Bandwidth

In theory, the Radeon R9 280X will be 88% quicker than the Radeon HD 5870 overall, due to its greater data rate. (explain)

Radeon R9 280X 288000 MB/sec
Radeon HD 5870 153600 MB/sec
Difference: 134400 (88%)

Texel Rate

The Radeon R9 280X is quite a bit (about 60%) more effective at anisotropic filtering than the Radeon HD 5870. (explain)

Radeon R9 280X 108800 Mtexels/sec
Radeon HD 5870 68000 Mtexels/sec
Difference: 40800 (60%)

Pixel Rate

Both cards have the exact same pixel fill rate, so theoretically they should perform equally good at at full screen anti-aliasing, and be capable of handling the same screen resolutions. (explain)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Radeon HD 5870

Amazon.com

Radeon R9 280X

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model Radeon HD 5870 Radeon R9 280X
Manufacturer AMD AMD
Year September 23, 2009 October 2013
Code Name Cypress XT Tahiti XTL
Fab Process 40 nm 28 nm
Bus PCIe 2.1 x16 PCIe 3.0 x16
Memory 1024 MB 3072 MB
Core Speed 850 MHz 850 MHz
Shader Speed N/A MHz (N/A) MHz
Memory Speed 1200 MHz (4800 MHz effective) 1500 MHz (6000 MHz effective)
Unified Shaders 1600(320x5) 2048
Texture Mapping Units 80 128
Render Output Units 32 32
Bus Type GDDR5 GDDR5
Bus Width 256-bit 384-bit
DirectX Version DirectX 11 DirectX 11.2
OpenGL Version OpenGL 3.2 OpenGL 4.3
Power (Max TDP) 188 watts 250 watts
Shader Model 5.0 5.0
Bandwidth 153600 MB/sec 288000 MB/sec
Texel Rate 68000 Mtexels/sec 108800 Mtexels/sec
Pixel Rate 27200 Mpixels/sec 27200 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of data (counted in megabytes per second) that can be moved over the external memory interface in a second. The number is worked out by multiplying the card's interface width by its memory clock speed. If it uses DDR type memory, it should be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The higher the card's memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be processed per second. This is worked out by multiplying the total number of texture units by the core clock speed of the chip. The better the texel rate, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the maximum amount of pixels the video card could possibly record to the local memory in a second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel output rate also depends on many other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree