Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

Radeon HD 5870 vs Radeon R9 280X

Intro

The Radeon HD 5870 has clock speeds of 850 MHz on the GPU, and 1200 MHz on the 1024 MB of GDDR5 RAM. It features 1600(320x5) SPUs along with 80 TAUs and 32 ROPs.

Compare those specifications to the Radeon R9 280X, which has a core clock speed of 850 MHz and a GDDR5 memory speed of 1500 MHz. It also features a 384-bit memory bus, and makes use of a 28 nm design. It is comprised of 2048 SPUs, 128 Texture Address Units, and 32 Raster Operation Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 5870 188 Watts
Radeon R9 280X 250 Watts
Difference: 62 Watts (33%)

Memory Bandwidth

Theoretically speaking, the Radeon R9 280X should perform quite a bit faster than the Radeon HD 5870 in general. (explain)

Radeon R9 280X 288000 MB/sec
Radeon HD 5870 153600 MB/sec
Difference: 134400 (88%)

Texel Rate

The Radeon R9 280X will be much (approximately 60%) more effective at texture filtering than the Radeon HD 5870. (explain)

Radeon R9 280X 108800 Mtexels/sec
Radeon HD 5870 68000 Mtexels/sec
Difference: 40800 (60%)

Pixel Rate

Both cards have exactly the same pixel fill rate, so in theory they should perform equally good at at FSAA, and be capable of handling the same screen resolutions. (explain)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

Radeon HD 5870

Amazon.com

Radeon R9 280X

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model Radeon HD 5870 Radeon R9 280X
Manufacturer AMD AMD
Year September 23, 2009 October 2013
Code Name Cypress XT Tahiti XTL
Memory 1024 MB 3072 MB
Core Speed 850 MHz 850 MHz
Memory Speed 4800 MHz 6000 MHz
Power (Max TDP) 188 watts 250 watts
Bandwidth 153600 MB/sec 288000 MB/sec
Texel Rate 68000 Mtexels/sec 108800 Mtexels/sec
Pixel Rate 27200 Mpixels/sec 27200 Mpixels/sec
Unified Shaders 1600(320x5) 2048
Texture Mapping Units 80 128
Render Output Units 32 32
Bus Type GDDR5 GDDR5
Bus Width 256-bit 384-bit
Fab Process 40 nm 28 nm
Transistors 2154 million 4313 million
Bus PCIe 2.1 x16 PCIe 3.0 x16
DirectX Version DirectX 11 DirectX 11.2
OpenGL Version OpenGL 3.2 OpenGL 4.3

Memory Bandwidth: Bandwidth is the max amount of information (in units of MB per second) that can be transported over the external memory interface in a second. It's calculated by multiplying the bus width by its memory speed. If it uses DDR RAM, the result should be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The better the memory bandwidth, the faster the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are applied in one second. This number is worked out by multiplying the total texture units by the core clock speed of the chip. The higher this number, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the most pixels the graphics card can possibly record to its local memory in one second - measured in millions of pixels per second. The figure is calculated by multiplying the amount of colour ROPs by the clock speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate is also dependant on quite a few other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]