Join Us On Facebook

Compare any two graphics cards:
VS

Radeon HD 7850 vs Radeon R9 280X

Intro

The Radeon HD 7850 features core speeds of 860 MHz on the GPU, and 1200 MHz on the 2048 MB of GDDR5 memory. It features 1024 SPUs along with 64 TAUs and 32 Rasterization Operator Units.

Compare those specs to the Radeon R9 280X, which makes use of a 28 nm design. AMD has clocked the core speed at 850 MHz. The GDDR5 memory runs at a speed of 1500 MHz on this card. It features 2048 SPUs along with 128 Texture Address Units and 32 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 7850 130 Watts
Radeon R9 280X 250 Watts
Difference: 120 Watts (92%)

Memory Bandwidth

Theoretically speaking, the Radeon R9 280X is 88% faster than the Radeon HD 7850 in general, because of its higher bandwidth. (explain)

Radeon R9 280X 288000 MB/sec
Radeon HD 7850 153600 MB/sec
Difference: 134400 (88%)

Texel Rate

The Radeon R9 280X will be a lot (more or less 98%) faster with regards to texture filtering than the Radeon HD 7850. (explain)

Radeon R9 280X 108800 Mtexels/sec
Radeon HD 7850 55040 Mtexels/sec
Difference: 53760 (98%)

Pixel Rate

The Radeon HD 7850 should be a small bit (more or less 1%) better at FSAA than the Radeon R9 280X, and also should be capable of handling higher screen resolutions without slowing down too much. (explain)

Radeon HD 7850 27520 Mpixels/sec
Radeon R9 280X 27200 Mpixels/sec
Difference: 320 (1%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Radeon HD 7850

Amazon.com

Radeon R9 280X

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model Radeon HD 7850 Radeon R9 280X
Manufacturer AMD AMD
Year March 2012 October 2013
Code Name Pitcairn Pro Tahiti XTL
Fab Process 28 nm 28 nm
Bus PCIe 3.0 x16 PCIe 3.0 x16
Memory 2048 MB 3072 MB
Core Speed 860 MHz 850 MHz
Shader Speed N/A MHz (N/A) MHz
Memory Speed 1200 MHz (4800 MHz effective) 1500 MHz (6000 MHz effective)
Unified Shaders 1024 2048
Texture Mapping Units 64 128
Render Output Units 32 32
Bus Type GDDR5 GDDR5
Bus Width 256-bit 384-bit
DirectX Version DirectX 11.1 DirectX 11.2
OpenGL Version OpenGL 4.2 OpenGL 4.3
Power (Max TDP) 130 watts 250 watts
Shader Model 5.0 5.0
Bandwidth 153600 MB/sec 288000 MB/sec
Texel Rate 55040 Mtexels/sec 108800 Mtexels/sec
Pixel Rate 27520 Mpixels/sec 27200 Mpixels/sec

Memory Bandwidth: Bandwidth is the largest amount of data (in units of megabytes per second) that can be moved across the external memory interface in a second. The number is calculated by multiplying the card's bus width by the speed of its memory. In the case of DDR memory, the result should be multiplied by 2 once again. If it uses DDR5, multiply by 4 instead. The better the bandwidth is, the faster the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are processed per second. This figure is calculated by multiplying the total amount of texture units of the card by the core speed of the chip. The better this number, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in one second.

Pixel Rate: Pixel rate is the most pixels the video card could possibly record to the local memory in a second - measured in millions of pixels per second. The number is calculated by multiplying the number of Raster Operations Pipelines by the the card's clock speed. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel rate also depends on quite a few other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing