Join Us On Facebook

Compare any two graphics cards:
VS

Radeon HD 7850 vs Radeon R9 280X

Intro

The Radeon HD 7850 comes with a GPU clock speed of 860 MHz, and the 2048 MB of GDDR5 memory is set to run at 1200 MHz through a 256-bit bus. It also is made up of 1024 Stream Processors, 64 Texture Address Units, and 32 Raster Operation Units.

Compare that to the Radeon R9 280X, which has a clock speed of 850 MHz and a GDDR5 memory frequency of 1500 MHz. It also makes use of a 384-bit bus, and uses a 28 nm design. It features 2048 SPUs, 128 TAUs, and 32 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 7850 130 Watts
Radeon R9 280X 250 Watts
Difference: 120 Watts (92%)

Memory Bandwidth

Theoretically speaking, the Radeon R9 280X should be 88% faster than the Radeon HD 7850 overall, due to its greater data rate. (explain)

Radeon R9 280X 288000 MB/sec
Radeon HD 7850 153600 MB/sec
Difference: 134400 (88%)

Texel Rate

The Radeon R9 280X should be much (more or less 98%) better at anisotropic filtering than the Radeon HD 7850. (explain)

Radeon R9 280X 108800 Mtexels/sec
Radeon HD 7850 55040 Mtexels/sec
Difference: 53760 (98%)

Pixel Rate

The Radeon HD 7850 will be a little bit (about 1%) more effective at FSAA than the Radeon R9 280X, and capable of handling higher resolutions more effectively. (explain)

Radeon HD 7850 27520 Mpixels/sec
Radeon R9 280X 27200 Mpixels/sec
Difference: 320 (1%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Radeon HD 7850

Amazon.com

Radeon R9 280X

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model Radeon HD 7850 Radeon R9 280X
Manufacturer AMD AMD
Year March 2012 October 2013
Code Name Pitcairn Pro Tahiti XTL
Fab Process 28 nm 28 nm
Bus PCIe 3.0 x16 PCIe 3.0 x16
Memory 2048 MB 3072 MB
Core Speed 860 MHz 850 MHz
Shader Speed N/A MHz (N/A) MHz
Memory Speed 1200 MHz (4800 MHz effective) 1500 MHz (6000 MHz effective)
Unified Shaders 1024 2048
Texture Mapping Units 64 128
Render Output Units 32 32
Bus Type GDDR5 GDDR5
Bus Width 256-bit 384-bit
DirectX Version DirectX 11.1 DirectX 11.2
OpenGL Version OpenGL 4.2 OpenGL 4.3
Power (Max TDP) 130 watts 250 watts
Shader Model 5.0 5.0
Bandwidth 153600 MB/sec 288000 MB/sec
Texel Rate 55040 Mtexels/sec 108800 Mtexels/sec
Pixel Rate 27520 Mpixels/sec 27200 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of information (in units of megabytes per second) that can be moved past the external memory interface within a second. The number is worked out by multiplying the interface width by its memory clock speed. If the card has DDR RAM, the result should be multiplied by 2 once again. If it uses DDR5, multiply by 4 instead. The higher the card's memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied in one second. This number is calculated by multiplying the total number of texture units of the card by the core speed of the chip. The better this number, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in one second.

Pixel Rate: Pixel rate is the most pixels that the graphics card could possibly write to its local memory in one second - measured in millions of pixels per second. The figure is worked out by multiplying the number of Raster Operations Pipelines by the clock speed of the card. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate also depends on lots of other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the ability to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing