Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

Radeon HD 5870 vs Radeon R9 270X

Intro

The Radeon HD 5870 uses a 40 nm design. AMD has clocked the core speed at 850 MHz. The GDDR5 memory is set to run at a speed of 1200 MHz on this specific card. It features 1600(320x5) SPUs along with 80 Texture Address Units and 32 Rasterization Operator Units.

Compare that to the Radeon R9 270X, which features core speeds of 1000 MHz on the GPU, and 1400 MHz on the 2048 MB of GDDR5 memory. It features 1280 SPUs as well as 80 Texture Address Units and 32 Rasterization Operator Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon R9 270X 180 Watts
Radeon HD 5870 188 Watts
Difference: 8 Watts (4%)

Memory Bandwidth

Theoretically, the Radeon R9 270X should perform a bit faster than the Radeon HD 5870 in general. (explain)

Radeon R9 270X 179200 MB/sec
Radeon HD 5870 153600 MB/sec
Difference: 25600 (17%)

Texel Rate

The Radeon R9 270X is just a bit (approximately 18%) better at anisotropic filtering than the Radeon HD 5870. (explain)

Radeon R9 270X 80000 Mtexels/sec
Radeon HD 5870 68000 Mtexels/sec
Difference: 12000 (18%)

Pixel Rate

If running with lots of anti-aliasing is important to you, then the Radeon R9 270X is a better choice, though only just barely. (explain)

Radeon R9 270X 32000 Mpixels/sec
Radeon HD 5870 27200 Mpixels/sec
Difference: 4800 (18%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

Radeon HD 5870

Amazon.com

Radeon R9 270X

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model Radeon HD 5870 Radeon R9 270X
Manufacturer AMD AMD
Year September 23, 2009 October 2013
Code Name Cypress XT Curacao XT
Memory 1024 MB 2048 MB
Core Speed 850 MHz 1000 MHz
Memory Speed 4800 MHz 5600 MHz
Power (Max TDP) 188 watts 180 watts
Bandwidth 153600 MB/sec 179200 MB/sec
Texel Rate 68000 Mtexels/sec 80000 Mtexels/sec
Pixel Rate 27200 Mpixels/sec 32000 Mpixels/sec
Unified Shaders 1600(320x5) 1280
Texture Mapping Units 80 80
Render Output Units 32 32
Bus Type GDDR5 GDDR5
Bus Width 256-bit 256-bit
Fab Process 40 nm 28 nm
Transistors 2154 million 2800 million
Bus PCIe 2.1 x16 PCIe 3.0 x16
DirectX Version DirectX 11 DirectX 11.2
OpenGL Version OpenGL 3.2 OpenGL 4.3

Memory Bandwidth: Memory bandwidth is the max amount of information (counted in megabytes per second) that can be transported over the external memory interface within a second. It is calculated by multiplying the bus width by the speed of its memory. If it uses DDR type memory, it should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The higher the memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be applied per second. This is calculated by multiplying the total number of texture units of the card by the core clock speed of the chip. The higher this number, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the most pixels that the graphics card can possibly record to its local memory in a second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of Raster Operations Pipelines by the clock speed of the card. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate also depends on many other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]