Join Us On Facebook

Compare any two graphics cards:
VS

Radeon HD 5870 vs Radeon R9 270X

Intro

The Radeon HD 5870 uses a 40 nm design. AMD has set the core frequency at 850 MHz. The GDDR5 RAM is set to run at a speed of 1200 MHz on this particular card. It features 1600(320x5) SPUs as well as 80 TAUs and 32 Rasterization Operator Units.

Compare all that to the Radeon R9 270X, which comes with core speeds of 1000 MHz on the GPU, and 1400 MHz on the 2048 MB of GDDR5 RAM. It features 1280 SPUs along with 80 TAUs and 32 ROPs.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon R9 270X 180 Watts
Radeon HD 5870 188 Watts
Difference: 8 Watts (4%)

Memory Bandwidth

The Radeon R9 270X should theoretically be a little bit faster than the Radeon HD 5870 in general. (explain)

Radeon R9 270X 179200 MB/sec
Radeon HD 5870 153600 MB/sec
Difference: 25600 (17%)

Texel Rate

The Radeon R9 270X should be a bit (approximately 18%) more effective at AF than the Radeon HD 5870. (explain)

Radeon R9 270X 80000 Mtexels/sec
Radeon HD 5870 68000 Mtexels/sec
Difference: 12000 (18%)

Pixel Rate

If running with a high resolution is important to you, then the Radeon R9 270X is the winner, but only just. (explain)

Radeon R9 270X 32000 Mpixels/sec
Radeon HD 5870 27200 Mpixels/sec
Difference: 4800 (18%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

Radeon HD 5870

Amazon.com

Radeon R9 270X

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model Radeon HD 5870 Radeon R9 270X
Manufacturer AMD AMD
Year September 23, 2009 October 2013
Code Name Cypress XT Curacao XT
Fab Process 40 nm 28 nm
Bus PCIe 2.1 x16 PCIe 3.0 x16
Memory 1024 MB 2048 MB
Core Speed 850 MHz 1000 MHz
Shader Speed N/A MHz (N/A) MHz
Memory Speed 1200 MHz (4800 MHz effective) 1400 MHz (5600 MHz effective)
Unified Shaders 1600(320x5) 1280
Texture Mapping Units 80 80
Render Output Units 32 32
Bus Type GDDR5 GDDR5
Bus Width 256-bit 256-bit
DirectX Version DirectX 11 DirectX 11.2
OpenGL Version OpenGL 3.2 OpenGL 4.3
Power (Max TDP) 188 watts 180 watts
Shader Model 5.0 5.0
Bandwidth 153600 MB/sec 179200 MB/sec
Texel Rate 68000 Mtexels/sec 80000 Mtexels/sec
Pixel Rate 27200 Mpixels/sec 32000 Mpixels/sec

Memory Bandwidth: Bandwidth is the maximum amount of information (counted in MB per second) that can be moved over the external memory interface within a second. It is worked out by multiplying the card's bus width by its memory clock speed. If the card has DDR type RAM, it must be multiplied by 2 once again. If it uses DDR5, multiply by 4 instead. The higher the bandwidth is, the faster the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are processed in one second. This number is worked out by multiplying the total number of texture units of the card by the core speed of the chip. The better this number, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics chip could possibly write to the local memory in a second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel rate is also dependant on many other factors, most notably the memory bandwidth - the lower the bandwidth is, the lower the ability to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing