Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

Radeon HD 5870 vs Radeon R9 270X

Intro

The Radeon HD 5870 features a clock speed of 850 MHz and a GDDR5 memory speed of 1200 MHz. It also makes use of a 256-bit bus, and uses a 40 nm design. It features 1600(320x5) SPUs, 80 Texture Address Units, and 32 Raster Operation Units.

Compare that to the Radeon R9 270X, which has a GPU core clock speed of 1000 MHz, and 2048 MB of GDDR5 memory running at 1400 MHz through a 256-bit bus. It also features 1280 SPUs, 80 TAUs, and 32 Raster Operation Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon R9 270X 180 Watts
Radeon HD 5870 188 Watts
Difference: 8 Watts (4%)

Memory Bandwidth

As far as performance goes, the Radeon R9 270X should in theory be a small bit superior to the Radeon HD 5870 overall. (explain)

Radeon R9 270X 179200 MB/sec
Radeon HD 5870 153600 MB/sec
Difference: 25600 (17%)

Texel Rate

The Radeon R9 270X will be just a bit (more or less 18%) faster with regards to texture filtering than the Radeon HD 5870. (explain)

Radeon R9 270X 80000 Mtexels/sec
Radeon HD 5870 68000 Mtexels/sec
Difference: 12000 (18%)

Pixel Rate

The Radeon R9 270X will be a small bit (approximately 18%) more effective at FSAA than the Radeon HD 5870, and also will be able to handle higher resolutions better. (explain)

Radeon R9 270X 32000 Mpixels/sec
Radeon HD 5870 27200 Mpixels/sec
Difference: 4800 (18%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

Radeon HD 5870

Amazon.com

Radeon R9 270X

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model Radeon HD 5870 Radeon R9 270X
Manufacturer AMD AMD
Year September 23, 2009 October 2013
Code Name Cypress XT Curacao XT
Memory 1024 MB 2048 MB
Core Speed 850 MHz 1000 MHz
Memory Speed 4800 MHz 5600 MHz
Power (Max TDP) 188 watts 180 watts
Bandwidth 153600 MB/sec 179200 MB/sec
Texel Rate 68000 Mtexels/sec 80000 Mtexels/sec
Pixel Rate 27200 Mpixels/sec 32000 Mpixels/sec
Unified Shaders 1600(320x5) 1280
Texture Mapping Units 80 80
Render Output Units 32 32
Bus Type GDDR5 GDDR5
Bus Width 256-bit 256-bit
Fab Process 40 nm 28 nm
Transistors 2154 million 2800 million
Bus PCIe 2.1 x16 PCIe 3.0 x16
DirectX Version DirectX 11 DirectX 11.2
OpenGL Version OpenGL 3.2 OpenGL 4.3

Memory Bandwidth: Bandwidth is the largest amount of data (in units of MB per second) that can be moved across the external memory interface within a second. It is worked out by multiplying the interface width by the speed of its memory. If the card has DDR type RAM, it should be multiplied by 2 again. If DDR5, multiply by 4 instead. The better the card's memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are processed per second. This is worked out by multiplying the total number of texture units of the card by the core speed of the chip. The higher this number, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics chip can possibly record to the local memory in a second - measured in millions of pixels per second. The number is worked out by multiplying the amount of colour ROPs by the clock speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate also depends on lots of other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]