Join Us On Facebook

Compare any two graphics cards:
VS

Radeon HD 7770 vs Radeon R9 270X

Intro

The Radeon HD 7770 makes use of a 28 nm design. AMD has clocked the core frequency at 1000 MHz. The GDDR5 RAM is set to run at a speed of 1125 MHz on this particular card. It features 640 SPUs as well as 40 Texture Address Units and 16 ROPs.

Compare that to the Radeon R9 270X, which makes use of a 28 nm design. AMD has set the core frequency at 1000 MHz. The GDDR5 RAM runs at a frequency of 1400 MHz on this specific card. It features 1280 SPUs along with 80 TAUs and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 7770 80 Watts
Radeon R9 270X 180 Watts
Difference: 100 Watts (125%)

Memory Bandwidth

Theoretically speaking, the Radeon R9 270X should be much faster than the Radeon HD 7770 overall. (explain)

Radeon R9 270X 179200 MB/sec
Radeon HD 7770 72000 MB/sec
Difference: 107200 (149%)

Texel Rate

The Radeon R9 270X will be a lot (more or less 100%) better at texture filtering than the Radeon HD 7770. (explain)

Radeon R9 270X 80000 Mtexels/sec
Radeon HD 7770 40000 Mtexels/sec
Difference: 40000 (100%)

Pixel Rate

If using high levels of AA is important to you, then the Radeon R9 270X is the winner, and very much so. (explain)

Radeon R9 270X 32000 Mpixels/sec
Radeon HD 7770 16000 Mpixels/sec
Difference: 16000 (100%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Radeon HD 7770

Amazon.com

Radeon R9 270X

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model Radeon HD 7770 Radeon R9 270X
Manufacturer AMD AMD
Year February 2012 October 2013
Code Name Cape Verde XT Curacao XT
Fab Process 28 nm 28 nm
Bus PCIe 3.0 x16 PCIe 3.0 x16
Memory 1024 MB 2048 MB
Core Speed 1000 MHz 1000 MHz
Shader Speed N/A MHz (N/A) MHz
Memory Speed 1125 MHz (4500 MHz effective) 1400 MHz (5600 MHz effective)
Unified Shaders 640 1280
Texture Mapping Units 40 80
Render Output Units 16 32
Bus Type GDDR5 GDDR5
Bus Width 128-bit 256-bit
DirectX Version DirectX 11.1 DirectX 11.2
OpenGL Version OpenGL 4.2 OpenGL 4.3
Power (Max TDP) 80 watts 180 watts
Shader Model 5.0 5.0
Bandwidth 72000 MB/sec 179200 MB/sec
Texel Rate 40000 Mtexels/sec 80000 Mtexels/sec
Pixel Rate 16000 Mpixels/sec 32000 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of information (counted in megabytes per second) that can be moved past the external memory interface in one second. It is calculated by multiplying the card's bus width by its memory speed. In the case of DDR memory, it must be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The higher the memory bandwidth, the better the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are applied per second. This number is worked out by multiplying the total number of texture units of the card by the core speed of the chip. The better the texel rate, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the maximum number of pixels the video card can possibly record to its local memory per second - measured in millions of pixels per second. The number is worked out by multiplying the amount of Raster Operations Pipelines by the the card's clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel rate is also dependant on lots of other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing