Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 660 Ti vs Radeon R9 270X

Intro

The GeForce GTX 660 Ti has a GPU clock speed of 915 MHz, and the 2048 MB of GDDR5 RAM is set to run at 1500 MHz through a 192-bit bus. It also is comprised of 1344 Stream Processors, 112 TAUs, and 24 Raster Operation Units.

Compare that to the Radeon R9 270X, which comes with a GPU core clock speed of 1000 MHz, and 2048 MB of GDDR5 memory running at 1400 MHz through a 256-bit bus. It also is comprised of 1280 SPUs, 80 TAUs, and 32 Raster Operation Units.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 660 Ti 150 Watts
Radeon R9 270X 180 Watts
Difference: 30 Watts (20%)

Memory Bandwidth

The Radeon R9 270X, in theory, should perform quite a bit faster than the GeForce GTX 660 Ti overall. (explain)

Radeon R9 270X 179200 MB/sec
GeForce GTX 660 Ti 144000 MB/sec
Difference: 35200 (24%)

Texel Rate

The GeForce GTX 660 Ti will be quite a bit (more or less 28%) better at AF than the Radeon R9 270X. (explain)

GeForce GTX 660 Ti 102480 Mtexels/sec
Radeon R9 270X 80000 Mtexels/sec
Difference: 22480 (28%)

Pixel Rate

The Radeon R9 270X should be a lot (about 46%) faster with regards to AA than the GeForce GTX 660 Ti, and also able to handle higher screen resolutions better. (explain)

Radeon R9 270X 32000 Mpixels/sec
GeForce GTX 660 Ti 21960 Mpixels/sec
Difference: 10040 (46%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 660 Ti

Amazon.com

Radeon R9 270X

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 660 Ti Radeon R9 270X
Manufacturer nVidia AMD
Year August 2012 October 2013
Code Name GK104 Curacao XT
Fab Process 28 nm 28 nm
Bus PCIe 3.0 x16 PCIe 3.0 x16
Memory 2048 MB 2048 MB
Core Speed 915 MHz 1000 MHz
Shader Speed 915 MHz (N/A) MHz
Memory Speed 1500 MHz (6000 MHz effective) 1400 MHz (5600 MHz effective)
Unified Shaders 1344 1280
Texture Mapping Units 112 80
Render Output Units 24 32
Bus Type GDDR5 GDDR5
Bus Width 192-bit 256-bit
DirectX Version DirectX 11.0 DirectX 11.2
OpenGL Version OpenGL 4.3 OpenGL 4.3
Power (Max TDP) 150 watts 180 watts
Shader Model 5.0 5.0
Bandwidth 144000 MB/sec 179200 MB/sec
Texel Rate 102480 Mtexels/sec 80000 Mtexels/sec
Pixel Rate 21960 Mpixels/sec 32000 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the largest amount of information (counted in MB per second) that can be transferred over the external memory interface in one second. It's worked out by multiplying the bus width by the speed of its memory. If it uses DDR RAM, it must be multiplied by 2 once again. If it uses DDR5, multiply by 4 instead. The better the memory bandwidth, the better the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be processed per second. This number is calculated by multiplying the total texture units by the core clock speed of the chip. The better the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics card could possibly write to the local memory per second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the number of Raster Operations Pipelines by the the card's clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate is also dependant on many other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing