Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTX 660 Ti vs Radeon R9 270X

Intro

The GeForce GTX 660 Ti makes use of a 28 nm design. nVidia has set the core frequency at 915 MHz. The GDDR5 memory is set to run at a speed of 1500 MHz on this specific model. It features 1344 SPUs as well as 112 Texture Address Units and 24 ROPs.

Compare those specs to the Radeon R9 270X, which has GPU clock speed of 1000 MHz, and 2048 MB of GDDR5 memory set to run at 1400 MHz through a 256-bit bus. It also is made up of 1280 Stream Processors, 80 Texture Address Units, and 32 Raster Operation Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 660 Ti 150 Watts
Radeon R9 270X 180 Watts
Difference: 30 Watts (20%)

Memory Bandwidth

In theory, the Radeon R9 270X is 24% faster than the GeForce GTX 660 Ti overall, because of its higher data rate. (explain)

Radeon R9 270X 179200 MB/sec
GeForce GTX 660 Ti 144000 MB/sec
Difference: 35200 (24%)

Texel Rate

The GeForce GTX 660 Ti is much (approximately 28%) better at AF than the Radeon R9 270X. (explain)

GeForce GTX 660 Ti 102480 Mtexels/sec
Radeon R9 270X 80000 Mtexels/sec
Difference: 22480 (28%)

Pixel Rate

The Radeon R9 270X will be quite a bit (about 46%) faster with regards to FSAA than the GeForce GTX 660 Ti, and also should be able to handle higher screen resolutions while still performing well. (explain)

Radeon R9 270X 32000 Mpixels/sec
GeForce GTX 660 Ti 21960 Mpixels/sec
Difference: 10040 (46%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 660 Ti

Amazon.com

Radeon R9 270X

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 660 Ti Radeon R9 270X
Manufacturer nVidia AMD
Year August 2012 October 2013
Code Name GK104 Curacao XT
Memory 2048 MB 2048 MB
Core Speed 915 MHz 1000 MHz
Memory Speed 6000 MHz 5600 MHz
Power (Max TDP) 150 watts 180 watts
Bandwidth 144000 MB/sec 179200 MB/sec
Texel Rate 102480 Mtexels/sec 80000 Mtexels/sec
Pixel Rate 21960 Mpixels/sec 32000 Mpixels/sec
Unified Shaders 1344 1280
Texture Mapping Units 112 80
Render Output Units 24 32
Bus Type GDDR5 GDDR5
Bus Width 192-bit 256-bit
Fab Process 28 nm 28 nm
Transistors 3540 million 2800 million
Bus PCIe 3.0 x16 PCIe 3.0 x16
DirectX Version DirectX 11.0 DirectX 11.2
OpenGL Version OpenGL 4.3 OpenGL 4.3

Memory Bandwidth: Bandwidth is the largest amount of data (in units of MB per second) that can be moved over the external memory interface in a second. The number is calculated by multiplying the interface width by its memory speed. If the card has DDR type RAM, the result should be multiplied by 2 once again. If DDR5, multiply by 4 instead. The better the card's memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are applied per second. This number is worked out by multiplying the total amount of texture units of the card by the core speed of the chip. The higher the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in one second.

Pixel Rate: Pixel rate is the maximum amount of pixels the graphics card can possibly write to the local memory per second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the number of Render Output Units by the the card's clock speed. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel output rate also depends on many other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]