Compare any two graphics cards:
VS

GeForce GTX 660 Ti vs Radeon R9 270X

Intro

The GeForce GTX 660 Ti comes with a core clock speed of 915 MHz and a GDDR5 memory speed of 1500 MHz. It also makes use of a 192-bit bus, and uses a 28 nm design. It is comprised of 1344 SPUs, 112 Texture Address Units, and 24 Raster Operation Units.

Compare those specs to the Radeon R9 270X, which features core clock speeds of 1000 MHz on the GPU, and 1400 MHz on the 2048 MB of GDDR5 memory. It features 1280 SPUs as well as 80 TAUs and 32 ROPs.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 660 Ti 150 Watts
Radeon R9 270X 180 Watts
Difference: 30 Watts (20%)

Memory Bandwidth

In theory, the Radeon R9 270X should be much faster than the GeForce GTX 660 Ti in general. (explain)

Radeon R9 270X 179200 MB/sec
GeForce GTX 660 Ti 144000 MB/sec
Difference: 35200 (24%)

Texel Rate

The GeForce GTX 660 Ti will be much (approximately 28%) more effective at texture filtering than the Radeon R9 270X. (explain)

GeForce GTX 660 Ti 102480 Mtexels/sec
Radeon R9 270X 80000 Mtexels/sec
Difference: 22480 (28%)

Pixel Rate

The Radeon R9 270X is much (approximately 46%) better at AA than the GeForce GTX 660 Ti, and also should be capable of handling higher screen resolutions without slowing down too much. (explain)

Radeon R9 270X 32000 Mpixels/sec
GeForce GTX 660 Ti 21960 Mpixels/sec
Difference: 10040 (46%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 660 Ti

Amazon.com

Radeon R9 270X

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 660 Ti Radeon R9 270X
Manufacturer nVidia AMD
Year August 2012 October 2013
Code Name GK104 Curacao XT
Fab Process 28 nm 28 nm
Bus PCIe 3.0 x16 PCIe 3.0 x16
Memory 2048 MB 2048 MB
Core Speed 915 MHz 1000 MHz
Shader Speed 915 MHz (N/A) MHz
Memory Speed 6000 MHz 5600 MHz
Unified Shaders 1344 1280
Texture Mapping Units 112 80
Render Output Units 24 32
Bus Type GDDR5 GDDR5
Bus Width 192-bit 256-bit
DirectX Version DirectX 11.0 DirectX 11.2
OpenGL Version OpenGL 4.3 OpenGL 4.3
Power (Max TDP) 150 watts 180 watts
Shader Model 5.0 5.0
Bandwidth 144000 MB/sec 179200 MB/sec
Texel Rate 102480 Mtexels/sec 80000 Mtexels/sec
Pixel Rate 21960 Mpixels/sec 32000 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the largest amount of data (measured in MB per second) that can be transferred over the external memory interface in one second. It is calculated by multiplying the interface width by the speed of its memory. In the case of DDR type memory, it must be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The better the card's memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are applied per second. This figure is worked out by multiplying the total amount of texture units of the card by the core clock speed of the chip. The higher the texel rate, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in a second.

Pixel Rate: Pixel rate is the most pixels that the graphics card can possibly write to its local memory in a second - measured in millions of pixels per second. The figure is calculated by multiplying the number of Raster Operations Pipelines by the the core speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel output rate is also dependant on quite a few other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing