Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTX 660 Ti vs Radeon R9 270X

Intro

The GeForce GTX 660 Ti comes with a clock speed of 915 MHz and a GDDR5 memory frequency of 1500 MHz. It also makes use of a 192-bit memory bus, and uses a 28 nm design. It is made up of 1344 SPUs, 112 TAUs, and 24 Raster Operation Units.

Compare all of that to the Radeon R9 270X, which has core clock speeds of 1000 MHz on the GPU, and 1400 MHz on the 2048 MB of GDDR5 memory. It features 1280 SPUs as well as 80 Texture Address Units and 32 Rasterization Operator Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 660 Ti 150 Watts
Radeon R9 270X 180 Watts
Difference: 30 Watts (20%)

Memory Bandwidth

The Radeon R9 270X should theoretically perform quite a bit faster than the GeForce GTX 660 Ti overall. (explain)

Radeon R9 270X 179200 MB/sec
GeForce GTX 660 Ti 144000 MB/sec
Difference: 35200 (24%)

Texel Rate

The GeForce GTX 660 Ti should be quite a bit (approximately 28%) faster with regards to AF than the Radeon R9 270X. (explain)

GeForce GTX 660 Ti 102480 Mtexels/sec
Radeon R9 270X 80000 Mtexels/sec
Difference: 22480 (28%)

Pixel Rate

If using high levels of AA is important to you, then the Radeon R9 270X is superior to the GeForce GTX 660 Ti, by a large margin. (explain)

Radeon R9 270X 32000 Mpixels/sec
GeForce GTX 660 Ti 21960 Mpixels/sec
Difference: 10040 (46%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 660 Ti

Amazon.com

Radeon R9 270X

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 660 Ti Radeon R9 270X
Manufacturer nVidia AMD
Year August 2012 October 2013
Code Name GK104 Curacao XT
Memory 2048 MB 2048 MB
Core Speed 915 MHz 1000 MHz
Memory Speed 6000 MHz 5600 MHz
Power (Max TDP) 150 watts 180 watts
Bandwidth 144000 MB/sec 179200 MB/sec
Texel Rate 102480 Mtexels/sec 80000 Mtexels/sec
Pixel Rate 21960 Mpixels/sec 32000 Mpixels/sec
Unified Shaders 1344 1280
Texture Mapping Units 112 80
Render Output Units 24 32
Bus Type GDDR5 GDDR5
Bus Width 192-bit 256-bit
Fab Process 28 nm 28 nm
Transistors 3540 million 2800 million
Bus PCIe 3.0 x16 PCIe 3.0 x16
DirectX Version DirectX 11.0 DirectX 11.2
OpenGL Version OpenGL 4.3 OpenGL 4.3

Memory Bandwidth: Memory bandwidth is the max amount of data (counted in megabytes per second) that can be transferred across the external memory interface in a second. The number is calculated by multiplying the card's bus width by its memory speed. In the case of DDR RAM, the result should be multiplied by 2 once again. If DDR5, multiply by ANOTHER 2x. The higher the card's memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are applied per second. This figure is worked out by multiplying the total texture units of the card by the core clock speed of the chip. The higher this number, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the maximum number of pixels the graphics card can possibly write to its local memory in a second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the amount of Render Output Units by the the core clock speed. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel output rate also depends on many other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]