Join Us On Facebook

Compare any two graphics cards:
VS

Geforce GTX 780 vs Radeon R9 270X

Intro

The Geforce GTX 780 features a clock frequency of 863 MHz and a GDDR5 memory frequency of 1502 MHz. It also uses a 384-bit memory bus, and uses a 28 nm design. It is comprised of 2304 SPUs, 192 TAUs, and 48 ROPs.

Compare those specifications to the Radeon R9 270X, which comes with core clock speeds of 1000 MHz on the GPU, and 1400 MHz on the 2048 MB of GDDR5 RAM. It features 1280 SPUs as well as 80 Texture Address Units and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon R9 270X 180 Watts
Geforce GTX 780 250 Watts
Difference: 70 Watts (39%)

Memory Bandwidth

Performance-wise, the Geforce GTX 780 should theoretically be quite a bit better than the Radeon R9 270X in general. (explain)

Geforce GTX 780 288384 MB/sec
Radeon R9 270X 179200 MB/sec
Difference: 109184 (61%)

Texel Rate

The Geforce GTX 780 is a lot (about 107%) faster with regards to texture filtering than the Radeon R9 270X. (explain)

Geforce GTX 780 165696 Mtexels/sec
Radeon R9 270X 80000 Mtexels/sec
Difference: 85696 (107%)

Pixel Rate

The Geforce GTX 780 is much (about 29%) faster with regards to AA than the Radeon R9 270X, and will be able to handle higher resolutions more effectively. (explain)

Geforce GTX 780 41424 Mpixels/sec
Radeon R9 270X 32000 Mpixels/sec
Difference: 9424 (29%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Geforce GTX 780

Amazon.com

Radeon R9 270X

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model Geforce GTX 780 Radeon R9 270X
Manufacturer nVidia AMD
Year May 2013 October 2013
Code Name GK110 Curacao XT
Fab Process 28 nm 28 nm
Bus PCIe 3.0 x16 PCIe 3.0 x16
Memory 3072 MB 2048 MB
Core Speed 863 MHz 1000 MHz
Shader Speed 863 MHz (N/A) MHz
Memory Speed 1502 MHz (6008 MHz effective) 1400 MHz (5600 MHz effective)
Unified Shaders 2304 1280
Texture Mapping Units 192 80
Render Output Units 48 32
Bus Type GDDR5 GDDR5
Bus Width 384-bit 256-bit
DirectX Version DirectX 11.0 DirectX 11.2
OpenGL Version OpenGL 4.3 OpenGL 4.3
Power (Max TDP) 250 watts 180 watts
Shader Model 5.0 5.0
Bandwidth 288384 MB/sec 179200 MB/sec
Texel Rate 165696 Mtexels/sec 80000 Mtexels/sec
Pixel Rate 41424 Mpixels/sec 32000 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of data (measured in megabytes per second) that can be moved over the external memory interface within a second. It is calculated by multiplying the card's interface width by the speed of its memory. In the case of DDR RAM, it should be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The higher the bandwidth is, the faster the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are processed in one second. This is worked out by multiplying the total amount of texture units by the core speed of the chip. The better the texel rate, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the maximum number of pixels the video card could possibly record to its local memory in one second - measured in millions of pixels per second. The number is calculated by multiplying the amount of Render Output Units by the the card's clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate also depends on quite a few other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the ability to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree