Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

Geforce GTX 780 vs Radeon R9 270X

Intro

The Geforce GTX 780 uses a 28 nm design. nVidia has set the core frequency at 863 MHz. The GDDR5 RAM works at a frequency of 1502 MHz on this specific card. It features 2304 SPUs as well as 192 Texture Address Units and 48 Rasterization Operator Units.

Compare those specifications to the Radeon R9 270X, which has core clock speeds of 1000 MHz on the GPU, and 1400 MHz on the 2048 MB of GDDR5 memory. It features 1280 SPUs as well as 80 Texture Address Units and 32 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon R9 270X 180 Watts
Geforce GTX 780 250 Watts
Difference: 70 Watts (39%)

Memory Bandwidth

The Geforce GTX 780, in theory, should perform a lot faster than the Radeon R9 270X in general. (explain)

Geforce GTX 780 288384 MB/sec
Radeon R9 270X 179200 MB/sec
Difference: 109184 (61%)

Texel Rate

The Geforce GTX 780 is much (approximately 107%) faster with regards to texture filtering than the Radeon R9 270X. (explain)

Geforce GTX 780 165696 Mtexels/sec
Radeon R9 270X 80000 Mtexels/sec
Difference: 85696 (107%)

Pixel Rate

The Geforce GTX 780 will be a lot (about 29%) faster with regards to full screen anti-aliasing than the Radeon R9 270X, and also will be capable of handling higher screen resolutions more effectively. (explain)

Geforce GTX 780 41424 Mpixels/sec
Radeon R9 270X 32000 Mpixels/sec
Difference: 9424 (29%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

Geforce GTX 780

Amazon.com

Radeon R9 270X

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model Geforce GTX 780 Radeon R9 270X
Manufacturer nVidia AMD
Year May 2013 October 2013
Code Name GK110 Curacao XT
Memory 3072 MB 2048 MB
Core Speed 863 MHz 1000 MHz
Memory Speed 6008 MHz 5600 MHz
Power (Max TDP) 250 watts 180 watts
Bandwidth 288384 MB/sec 179200 MB/sec
Texel Rate 165696 Mtexels/sec 80000 Mtexels/sec
Pixel Rate 41424 Mpixels/sec 32000 Mpixels/sec
Unified Shaders 2304 1280
Texture Mapping Units 192 80
Render Output Units 48 32
Bus Type GDDR5 GDDR5
Bus Width 384-bit 256-bit
Fab Process 28 nm 28 nm
Transistors 7080 million 2800 million
Bus PCIe 3.0 x16 PCIe 3.0 x16
DirectX Version DirectX 11.0 DirectX 11.2
OpenGL Version OpenGL 4.3 OpenGL 4.3

Memory Bandwidth: Bandwidth is the largest amount of information (counted in megabytes per second) that can be transported over the external memory interface in a second. The number is calculated by multiplying the card's bus width by the speed of its memory. If it uses DDR type RAM, it must be multiplied by 2 once again. If DDR5, multiply by ANOTHER 2x. The higher the card's memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are applied in one second. This is calculated by multiplying the total amount of texture units of the card by the core clock speed of the chip. The better this number, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the most pixels the graphics card could possibly record to the local memory in one second - measured in millions of pixels per second. The number is worked out by multiplying the number of colour ROPs by the clock speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate is also dependant on quite a few other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the potential to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]