Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:

Radeon HD 7870 XT vs Radeon R9 270X


The Radeon HD 7870 XT features clock speeds of 925 MHz on the GPU, and 1500 MHz on the 2048 MB of GDDR5 RAM. It features 1536 SPUs as well as 96 Texture Address Units and 32 ROPs.

Compare those specifications to the Radeon R9 270X, which comes with a GPU core clock speed of 1000 MHz, and 2048 MB of GDDR5 RAM running at 1400 MHz through a 256-bit bus. It also features 1280 Stream Processors, 80 Texture Address Units, and 32 Raster Operation Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon R9 270X 180 Watts
Radeon HD 7870 XT 185 Watts
Difference: 5 Watts (3%)

Memory Bandwidth

As far as performance goes, the Radeon HD 7870 XT should in theory be a small bit better than the Radeon R9 270X overall. (explain)

Radeon HD 7870 XT 192000 MB/sec
Radeon R9 270X 179200 MB/sec
Difference: 12800 (7%)

Texel Rate

The Radeon HD 7870 XT will be just a bit (approximately 11%) faster with regards to anisotropic filtering than the Radeon R9 270X. (explain)

Radeon HD 7870 XT 88800 Mtexels/sec
Radeon R9 270X 80000 Mtexels/sec
Difference: 8800 (11%)

Pixel Rate

If running with a high screen resolution is important to you, then the Radeon R9 270X is a better choice, though not by far. (explain)

Radeon R9 270X 32000 Mpixels/sec
Radeon HD 7870 XT 29600 Mpixels/sec
Difference: 2400 (8%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

Radeon HD 7870 XT

Radeon R9 270X

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.


Display Specifications

Hide Specifications

Model Radeon HD 7870 XT Radeon R9 270X
Manufacturer AMD AMD
Year November 2012 October 2013
Code Name Tahiti LE Curacao XT
Memory 2048 MB 2048 MB
Core Speed 925 MHz 1000 MHz
Memory Speed 6000 MHz 5600 MHz
Power (Max TDP) 185 watts 180 watts
Bandwidth 192000 MB/sec 179200 MB/sec
Texel Rate 88800 Mtexels/sec 80000 Mtexels/sec
Pixel Rate 29600 Mpixels/sec 32000 Mpixels/sec
Unified Shaders 1536 1280
Texture Mapping Units 96 80
Render Output Units 32 32
Bus Type GDDR5 GDDR5
Bus Width 256-bit 256-bit
Fab Process 28 nm 28 nm
Transistors 4313 million 2800 million
Bus PCIe 3.0 x16 PCIe 3.0 x16
DirectX Version DirectX 11.1 DirectX 11.2
OpenGL Version OpenGL 4.3 OpenGL 4.3

Memory Bandwidth: Memory bandwidth is the max amount of data (measured in megabytes per second) that can be transported across the external memory interface within a second. It's worked out by multiplying the card's bus width by the speed of its memory. If the card has DDR RAM, it must be multiplied by 2 once again. If DDR5, multiply by ANOTHER 2x. The higher the bandwidth is, the faster the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be applied in one second. This is calculated by multiplying the total texture units by the core clock speed of the chip. The better this number, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels in a second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics card can possibly record to the local memory in one second - measured in millions of pixels per second. The number is calculated by multiplying the number of colour ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel rate is also dependant on quite a few other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to reach the max fill rate.


Be the first to leave a comment!

Your email address will not be published. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield