Join Us On Facebook

Compare any two graphics cards:
VS

Radeon HD 7870 XT vs Radeon R9 270X

Intro

The Radeon HD 7870 XT has a GPU core clock speed of 925 MHz, and the 2048 MB of GDDR5 RAM runs at 1500 MHz through a 256-bit bus. It also is comprised of 1536 Stream Processors, 96 Texture Address Units, and 32 Raster Operation Units.

Compare all of that to the Radeon R9 270X, which makes use of a 28 nm design. AMD has set the core speed at 1000 MHz. The GDDR5 RAM runs at a speed of 1400 MHz on this particular model. It features 1280 SPUs as well as 80 TAUs and 32 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon R9 270X 180 Watts
Radeon HD 7870 XT 185 Watts
Difference: 5 Watts (3%)

Memory Bandwidth

Theoretically speaking, the Radeon HD 7870 XT should be a little bit faster than the Radeon R9 270X in general. (explain)

Radeon HD 7870 XT 192000 MB/sec
Radeon R9 270X 179200 MB/sec
Difference: 12800 (7%)

Texel Rate

The Radeon HD 7870 XT should be a little bit (approximately 11%) more effective at anisotropic filtering than the Radeon R9 270X. (explain)

Radeon HD 7870 XT 88800 Mtexels/sec
Radeon R9 270X 80000 Mtexels/sec
Difference: 8800 (11%)

Pixel Rate

If running with a high resolution is important to you, then the Radeon R9 270X is a better choice, but not by far. (explain)

Radeon R9 270X 32000 Mpixels/sec
Radeon HD 7870 XT 29600 Mpixels/sec
Difference: 2400 (8%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Radeon HD 7870 XT

Amazon.com

Radeon R9 270X

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model Radeon HD 7870 XT Radeon R9 270X
Manufacturer AMD AMD
Year November 2012 October 2013
Code Name Tahiti LE Curacao XT
Fab Process 28 nm 28 nm
Bus PCIe 3.0 x16 PCIe 3.0 x16
Memory 2048 MB 2048 MB
Core Speed 925 MHz 1000 MHz
Shader Speed N/A MHz (N/A) MHz
Memory Speed 1500 MHz (6000 MHz effective) 1400 MHz (5600 MHz effective)
Unified Shaders 1536 1280
Texture Mapping Units 96 80
Render Output Units 32 32
Bus Type GDDR5 GDDR5
Bus Width 256-bit 256-bit
DirectX Version DirectX 11.1 DirectX 11.2
OpenGL Version OpenGL 4.3 OpenGL 4.3
Power (Max TDP) 185 watts 180 watts
Shader Model 5.0 5.0
Bandwidth 192000 MB/sec 179200 MB/sec
Texel Rate 88800 Mtexels/sec 80000 Mtexels/sec
Pixel Rate 29600 Mpixels/sec 32000 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of data (in units of megabytes per second) that can be transported over the external memory interface in one second. It is worked out by multiplying the card's bus width by its memory clock speed. If it uses DDR type RAM, it must be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The better the bandwidth is, the better the card will be in general. It especially helps with AA, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be applied in one second. This figure is calculated by multiplying the total texture units of the card by the core clock speed of the chip. The better this number, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics chip could possibly record to its local memory in a second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the number of ROPs by the clock speed of the card. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate also depends on quite a few other factors, most notably the memory bandwidth - the lower the bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree