Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GT 240 GDDR5 vs Radeon R7 250

Intro

The GeForce GT 240 GDDR5 makes use of a 40 nm design. nVidia has set the core frequency at 550 MHz. The GDDR5 memory works at a speed of 850 MHz on this specific card. It features 96 SPUs along with 32 TAUs and 8 ROPs.

Compare those specifications to the Radeon R7 250, which comes with a clock frequency of 1000 MHz and a GDDR5 memory frequency of 1150 MHz. It also uses a 128-bit memory bus, and uses a 28 nm design. It is made up of 384 SPUs, 24 Texture Address Units, and 8 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon R7 250 65 Watts
GeForce GT 240 GDDR5 70 Watts
Difference: 5 Watts (8%)

Memory Bandwidth

The Radeon R7 250 should in theory perform much faster than the GeForce GT 240 GDDR5 in general. (explain)

Radeon R7 250 73600 MB/sec
GeForce GT 240 GDDR5 54400 MB/sec
Difference: 19200 (35%)

Texel Rate

The Radeon R7 250 is a lot (more or less 36%) faster with regards to AF than the GeForce GT 240 GDDR5. (explain)

Radeon R7 250 24000 Mtexels/sec
GeForce GT 240 GDDR5 17600 Mtexels/sec
Difference: 6400 (36%)

Pixel Rate

If running with lots of anti-aliasing is important to you, then the Radeon R7 250 is a better choice, and very much so. (explain)

Radeon R7 250 8000 Mpixels/sec
GeForce GT 240 GDDR5 4400 Mpixels/sec
Difference: 3600 (82%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GT 240 GDDR5

Amazon.com

Radeon R7 250

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GT 240 GDDR5 Radeon R7 250
Manufacturer nVidia AMD
Year Novermber 2009 October 2013
Code Name GT215 Oland XT
Fab Process 40 nm 28 nm
Bus PCIe x16 PCIe 3.0 x16
Memory 512 MB 1024 MB
Core Speed 550 MHz 1000 MHz
Shader Speed 1360 MHz (N/A) MHz
Memory Speed 850 MHz (3400 MHz effective) 1150 MHz (4600 MHz effective)
Unified Shaders 96 384
Texture Mapping Units 32 24
Render Output Units 8 8
Bus Type GDDR5 GDDR5
Bus Width 128-bit 128-bit
DirectX Version DirectX 10.1 DirectX 11.2
OpenGL Version OpenGL 3.2 OpenGL 4.3
Power (Max TDP) 70 watts 65 watts
Shader Model 4.1 5.0
Bandwidth 54400 MB/sec 73600 MB/sec
Texel Rate 17600 Mtexels/sec 24000 Mtexels/sec
Pixel Rate 4400 Mpixels/sec 8000 Mpixels/sec

Memory Bandwidth: Bandwidth is the largest amount of data (counted in megabytes per second) that can be moved past the external memory interface in one second. It's calculated by multiplying the card's bus width by the speed of its memory. If it uses DDR RAM, the result should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The higher the memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are processed in one second. This figure is calculated by multiplying the total texture units by the core clock speed of the chip. The higher the texel rate, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the most pixels that the graphics chip can possibly write to its local memory in a second - measured in millions of pixels per second. The number is calculated by multiplying the amount of colour ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel output rate also depends on lots of other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree