Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GT 240 GDDR5 vs Radeon R7 250

Intro

The GeForce GT 240 GDDR5 uses a 40 nm design. nVidia has set the core speed at 550 MHz. The GDDR5 memory runs at a frequency of 850 MHz on this card. It features 96 SPUs along with 32 Texture Address Units and 8 Rasterization Operator Units.

Compare those specs to the Radeon R7 250, which comes with a core clock speed of 1000 MHz and a GDDR5 memory speed of 1150 MHz. It also makes use of a 128-bit bus, and uses a 28 nm design. It is comprised of 384 SPUs, 24 TAUs, and 8 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon R7 250 65 Watts
GeForce GT 240 GDDR5 70 Watts
Difference: 5 Watts (8%)

Memory Bandwidth

The Radeon R7 250 should theoretically perform a lot faster than the GeForce GT 240 GDDR5 in general. (explain)

Radeon R7 250 73600 MB/sec
GeForce GT 240 GDDR5 54400 MB/sec
Difference: 19200 (35%)

Texel Rate

The Radeon R7 250 is a lot (more or less 36%) better at AF than the GeForce GT 240 GDDR5. (explain)

Radeon R7 250 24000 Mtexels/sec
GeForce GT 240 GDDR5 17600 Mtexels/sec
Difference: 6400 (36%)

Pixel Rate

The Radeon R7 250 is quite a bit (about 82%) better at FSAA than the GeForce GT 240 GDDR5, and capable of handling higher resolutions without slowing down too much. (explain)

Radeon R7 250 8000 Mpixels/sec
GeForce GT 240 GDDR5 4400 Mpixels/sec
Difference: 3600 (82%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Please note that the price comparisons are based on search keywords, and might not be the exact same card listed on this page. We have no control over the accuracy of their search results.

GeForce GT 240 GDDR5

Amazon.com

Other US-based stores

Radeon R7 250

Amazon.com

Other US-based stores

Specifications

Model GeForce GT 240 GDDR5 Radeon R7 250
Manufacturer nVidia ATi
Year Novermber 2009 October 2013
Code Name GT215 Oland XT
Fab Process 40 nm 28 nm
Bus PCIe x16 PCIe 3.0 x16
Memory 512 MB 1024 MB
Core Speed 550 MHz 1000 MHz
Shader Speed 1360 MHz (N/A) MHz
Memory Speed 850 MHz (3400 MHz effective) 1150 MHz (4600 MHz effective)
Unified Shaders 96 384
Texture Mapping Units 32 24
Render Output Units 8 8
Bus Type GDDR5 GDDR5
Bus Width 128-bit 128-bit
DirectX Version DirectX 10.1 DirectX 11.2
OpenGL Version OpenGL 3.2 OpenGL 4.3
Power (Max TDP) 70 watts 65 watts
Shader Model 4.1 5.0
Bandwidth 54400 MB/sec 73600 MB/sec
Texel Rate 17600 Mtexels/sec 24000 Mtexels/sec
Pixel Rate 4400 Mpixels/sec 8000 Mpixels/sec

Memory Bandwidth: Bandwidth is the largest amount of information (counted in MB per second) that can be transferred over the external memory interface in a second. It's calculated by multiplying the interface width by the speed of its memory. If it uses DDR type RAM, the result should be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The better the memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are processed in one second. This number is calculated by multiplying the total number of texture units of the card by the core speed of the chip. The better the texel rate, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the most pixels that the graphics card could possibly write to the local memory in a second - measured in millions of pixels per second. The number is calculated by multiplying the number of colour ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate also depends on lots of other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree