Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GT 240 GDDR5 vs Radeon R7 250

Intro

The GeForce GT 240 GDDR5 has a core clock speed of 550 MHz and a GDDR5 memory frequency of 850 MHz. It also uses a 128-bit bus, and uses a 40 nm design. It is comprised of 96 SPUs, 32 Texture Address Units, and 8 ROPs.

Compare those specifications to the Radeon R7 250, which features a core clock frequency of 1000 MHz and a GDDR5 memory frequency of 1150 MHz. It also features a 128-bit bus, and uses a 28 nm design. It is made up of 384 SPUs, 24 TAUs, and 8 Raster Operation Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon R7 250 65 Watts
GeForce GT 240 GDDR5 70 Watts
Difference: 5 Watts (8%)

Memory Bandwidth

Theoretically, the Radeon R7 250 should perform quite a bit faster than the GeForce GT 240 GDDR5 overall. (explain)

Radeon R7 250 73600 MB/sec
GeForce GT 240 GDDR5 54400 MB/sec
Difference: 19200 (35%)

Texel Rate

The Radeon R7 250 is much (more or less 36%) more effective at texture filtering than the GeForce GT 240 GDDR5. (explain)

Radeon R7 250 24000 Mtexels/sec
GeForce GT 240 GDDR5 17600 Mtexels/sec
Difference: 6400 (36%)

Pixel Rate

The Radeon R7 250 is a lot (approximately 82%) faster with regards to anti-aliasing than the GeForce GT 240 GDDR5, and also will be capable of handling higher resolutions better. (explain)

Radeon R7 250 8000 Mpixels/sec
GeForce GT 240 GDDR5 4400 Mpixels/sec
Difference: 3600 (82%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GT 240 GDDR5

Amazon.com

Radeon R7 250

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GT 240 GDDR5 Radeon R7 250
Manufacturer nVidia AMD
Year Novermber 2009 October 2013
Code Name GT215 Oland XT
Memory 512 MB 1024 MB
Core Speed 550 MHz 1000 MHz
Memory Speed 3400 MHz 4600 MHz
Power (Max TDP) 70 watts 65 watts
Bandwidth 54400 MB/sec 73600 MB/sec
Texel Rate 17600 Mtexels/sec 24000 Mtexels/sec
Pixel Rate 4400 Mpixels/sec 8000 Mpixels/sec
Unified Shaders 96 384
Texture Mapping Units 32 24
Render Output Units 8 8
Bus Type GDDR5 GDDR5
Bus Width 128-bit 128-bit
Fab Process 40 nm 28 nm
Transistors 289 million 1040 million
Bus PCIe x16 PCIe 3.0 x16
DirectX Version DirectX 10.1 DirectX 11.2
OpenGL Version OpenGL 3.2 OpenGL 4.3

Memory Bandwidth: Memory bandwidth is the largest amount of data (counted in MB per second) that can be moved over the external memory interface in one second. It's calculated by multiplying the bus width by its memory speed. In the case of DDR type RAM, the result should be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The better the memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be applied in one second. This figure is worked out by multiplying the total number of texture units of the card by the core clock speed of the chip. The higher the texel rate, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the most pixels that the graphics chip could possibly write to its local memory in a second - measured in millions of pixels per second. The figure is calculated by multiplying the amount of Raster Operations Pipelines by the the core clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate also depends on quite a few other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the potential to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]