Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 550 Ti vs Radeon R7 250

Intro

The GeForce GTX 550 Ti comes with a clock speed of 900 MHz and a GDDR5 memory speed of 1026 MHz. It also makes use of a 192-bit bus, and makes use of a 40 nm design. It is made up of 192 SPUs, 32 TAUs, and 24 Raster Operation Units.

Compare those specs to the Radeon R7 250, which has a clock frequency of 1000 MHz and a GDDR5 memory speed of 1150 MHz. It also features a 128-bit memory bus, and makes use of a 28 nm design. It is made up of 384 SPUs, 24 Texture Address Units, and 8 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon R7 250 65 Watts
GeForce GTX 550 Ti 116 Watts
Difference: 51 Watts (78%)

Memory Bandwidth

In theory, the GeForce GTX 550 Ti should be quite a bit faster than the Radeon R7 250 overall. (explain)

GeForce GTX 550 Ti 98496 MB/sec
Radeon R7 250 73600 MB/sec
Difference: 24896 (34%)

Texel Rate

The GeForce GTX 550 Ti will be a small bit (approximately 20%) faster with regards to AF than the Radeon R7 250. (explain)

GeForce GTX 550 Ti 28800 Mtexels/sec
Radeon R7 250 24000 Mtexels/sec
Difference: 4800 (20%)

Pixel Rate

If using high levels of AA is important to you, then the GeForce GTX 550 Ti is the winner, by a large margin. (explain)

GeForce GTX 550 Ti 21600 Mpixels/sec
Radeon R7 250 8000 Mpixels/sec
Difference: 13600 (170%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 550 Ti

Amazon.com

Radeon R7 250

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 550 Ti Radeon R7 250
Manufacturer nVidia AMD
Year March 2011 October 2013
Code Name GF116 Oland XT
Fab Process 40 nm 28 nm
Bus PCIe 2.1 x16 PCIe 3.0 x16
Memory 1024 MB 1024 MB
Core Speed 900 MHz 1000 MHz
Shader Speed 1800 MHz (N/A) MHz
Memory Speed 1026 MHz (4104 MHz effective) 1150 MHz (4600 MHz effective)
Unified Shaders 192 384
Texture Mapping Units 32 24
Render Output Units 24 8
Bus Type GDDR5 GDDR5
Bus Width 192-bit 128-bit
DirectX Version DirectX 11 DirectX 11.2
OpenGL Version OpenGL 4.1 OpenGL 4.3
Power (Max TDP) 116 watts 65 watts
Shader Model 5.0 5.0
Bandwidth 98496 MB/sec 73600 MB/sec
Texel Rate 28800 Mtexels/sec 24000 Mtexels/sec
Pixel Rate 21600 Mpixels/sec 8000 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of data (in units of megabytes per second) that can be transported past the external memory interface in one second. It's calculated by multiplying the bus width by its memory clock speed. If the card has DDR memory, the result should be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The better the memory bandwidth, the better the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are processed per second. This is calculated by multiplying the total texture units of the card by the core speed of the chip. The higher this number, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the most pixels the video card can possibly record to the local memory in one second - measured in millions of pixels per second. The number is calculated by multiplying the amount of ROPs by the clock speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate also depends on many other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the potential to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree