Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTX 550 Ti vs Radeon R7 250

Intro

The GeForce GTX 550 Ti makes use of a 40 nm design. nVidia has set the core speed at 900 MHz. The GDDR5 RAM runs at a frequency of 1026 MHz on this model. It features 192 SPUs along with 32 Texture Address Units and 24 Rasterization Operator Units.

Compare that to the Radeon R7 250, which makes use of a 28 nm design. AMD has set the core speed at 1000 MHz. The GDDR5 memory is set to run at a frequency of 1150 MHz on this particular card. It features 384 SPUs along with 24 Texture Address Units and 8 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon R7 250 65 Watts
GeForce GTX 550 Ti 116 Watts
Difference: 51 Watts (78%)

Memory Bandwidth

As far as performance goes, the GeForce GTX 550 Ti should in theory be quite a bit superior to the Radeon R7 250 overall. (explain)

GeForce GTX 550 Ti 98496 MB/sec
Radeon R7 250 73600 MB/sec
Difference: 24896 (34%)

Texel Rate

The GeForce GTX 550 Ti is just a bit (about 20%) better at texture filtering than the Radeon R7 250. (explain)

GeForce GTX 550 Ti 28800 Mtexels/sec
Radeon R7 250 24000 Mtexels/sec
Difference: 4800 (20%)

Pixel Rate

The GeForce GTX 550 Ti should be quite a bit (about 170%) faster with regards to full screen anti-aliasing than the Radeon R7 250, and also able to handle higher screen resolutions without slowing down too much. (explain)

GeForce GTX 550 Ti 21600 Mpixels/sec
Radeon R7 250 8000 Mpixels/sec
Difference: 13600 (170%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 550 Ti

Amazon.com

Radeon R7 250

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 550 Ti Radeon R7 250
Manufacturer nVidia AMD
Year March 2011 October 2013
Code Name GF116 Oland XT
Memory 1024 MB 1024 MB
Core Speed 900 MHz 1000 MHz
Memory Speed 4104 MHz 4600 MHz
Power (Max TDP) 116 watts 65 watts
Bandwidth 98496 MB/sec 73600 MB/sec
Texel Rate 28800 Mtexels/sec 24000 Mtexels/sec
Pixel Rate 21600 Mpixels/sec 8000 Mpixels/sec
Unified Shaders 192 384
Texture Mapping Units 32 24
Render Output Units 24 8
Bus Type GDDR5 GDDR5
Bus Width 192-bit 128-bit
Fab Process 40 nm 28 nm
Transistors 1170 million 1040 million
Bus PCIe 2.1 x16 PCIe 3.0 x16
DirectX Version DirectX 11 DirectX 11.2
OpenGL Version OpenGL 4.1 OpenGL 4.3

Memory Bandwidth: Bandwidth is the max amount of information (counted in MB per second) that can be moved over the external memory interface in one second. It is worked out by multiplying the interface width by the speed of its memory. If it uses DDR type RAM, it should be multiplied by 2 once again. If DDR5, multiply by ANOTHER 2x. The better the memory bandwidth, the better the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied per second. This number is worked out by multiplying the total amount of texture units of the card by the core speed of the chip. The higher the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels in a second.

Pixel Rate: Pixel rate is the most pixels that the graphics chip could possibly record to the local memory in one second - measured in millions of pixels per second. The number is calculated by multiplying the number of Render Output Units by the clock speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel output rate also depends on many other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]