Join Us On Facebook

Compare any two graphics cards:
VS

Radeon HD 7750 vs Radeon R7 250

Intro

The Radeon HD 7750 makes use of a 28 nm design. AMD has set the core frequency at 800 MHz. The GDDR5 memory runs at a speed of 1125 MHz on this card. It features 512 SPUs along with 32 Texture Address Units and 16 ROPs.

Compare all that to the Radeon R7 250, which uses a 28 nm design. AMD has set the core speed at 1000 MHz. The GDDR5 RAM is set to run at a speed of 1150 MHz on this card. It features 384 SPUs along with 24 TAUs and 8 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 7750 55 Watts
Radeon R7 250 65 Watts
Difference: 10 Watts (18%)

Memory Bandwidth

Theoretically, the Radeon R7 250 should perform a little bit faster than the Radeon HD 7750 in general. (explain)

Radeon R7 250 73600 MB/sec
Radeon HD 7750 72000 MB/sec
Difference: 1600 (2%)

Texel Rate

The Radeon HD 7750 is a bit (more or less 7%) faster with regards to AF than the Radeon R7 250. (explain)

Radeon HD 7750 25600 Mtexels/sec
Radeon R7 250 24000 Mtexels/sec
Difference: 1600 (7%)

Pixel Rate

If running with a high screen resolution is important to you, then the Radeon HD 7750 is the winner, and very much so. (explain)

Radeon HD 7750 12800 Mpixels/sec
Radeon R7 250 8000 Mpixels/sec
Difference: 4800 (60%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Radeon HD 7750

Amazon.com

Radeon R7 250

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model Radeon HD 7750 Radeon R7 250
Manufacturer AMD AMD
Year February 2012 October 2013
Code Name Cape Verde Pro Oland XT
Fab Process 28 nm 28 nm
Bus PCIe 3.0 x16 PCIe 3.0 x16
Memory 1024 MB 1024 MB
Core Speed 800 MHz 1000 MHz
Shader Speed N/A MHz (N/A) MHz
Memory Speed 1125 MHz (4500 MHz effective) 1150 MHz (4600 MHz effective)
Unified Shaders 512 384
Texture Mapping Units 32 24
Render Output Units 16 8
Bus Type GDDR5 GDDR5
Bus Width 128-bit 128-bit
DirectX Version DirectX 11.1 DirectX 11.2
OpenGL Version OpenGL 4.2 OpenGL 4.3
Power (Max TDP) 55 watts 65 watts
Shader Model 5.0 5.0
Bandwidth 72000 MB/sec 73600 MB/sec
Texel Rate 25600 Mtexels/sec 24000 Mtexels/sec
Pixel Rate 12800 Mpixels/sec 8000 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the largest amount of information (measured in MB per second) that can be moved past the external memory interface in a second. The number is worked out by multiplying the interface width by the speed of its memory. If the card has DDR type memory, it must be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The higher the card's memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be applied per second. This figure is worked out by multiplying the total number of texture units of the card by the core speed of the chip. The higher this number, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the maximum amount of pixels the graphics card can possibly write to the local memory in one second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the number of colour ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate also depends on quite a few other factors, most notably the memory bandwidth - the lower the bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

One Response to “Radeon HD 7750 vs Radeon R7 250”
G Hanson says:
R7 250 sucks. 7750 wins.....

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree