Compare any two graphics cards:
VS

Radeon HD 7770 vs Radeon R7 250

Intro

The Radeon HD 7770 makes use of a 28 nm design. AMD has clocked the core speed at 1000 MHz. The GDDR5 memory works at a speed of 1125 MHz on this specific card. It features 640 SPUs as well as 40 TAUs and 16 Rasterization Operator Units.

Compare those specs to the Radeon R7 250, which features a clock speed of 1000 MHz and a GDDR5 memory frequency of 1150 MHz. It also uses a 128-bit bus, and uses a 28 nm design. It features 384 SPUs, 24 TAUs, and 8 ROPs.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon R7 250 65 Watts
Radeon HD 7770 80 Watts
Difference: 15 Watts (23%)

Memory Bandwidth

Theoretically speaking, the Radeon R7 250 should be 2% quicker than the Radeon HD 7770 overall, because of its higher bandwidth. (explain)

Radeon R7 250 73600 MB/sec
Radeon HD 7770 72000 MB/sec
Difference: 1600 (2%)

Texel Rate

The Radeon HD 7770 will be quite a bit (more or less 67%) faster with regards to anisotropic filtering than the Radeon R7 250. (explain)

Radeon HD 7770 40000 Mtexels/sec
Radeon R7 250 24000 Mtexels/sec
Difference: 16000 (67%)

Pixel Rate

The Radeon HD 7770 will be a lot (more or less 100%) more effective at anti-aliasing than the Radeon R7 250, and also able to handle higher screen resolutions without losing too much performance. (explain)

Radeon HD 7770 16000 Mpixels/sec
Radeon R7 250 8000 Mpixels/sec
Difference: 8000 (100%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

Radeon HD 7770

Amazon.com

Radeon R7 250

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model Radeon HD 7770 Radeon R7 250
Manufacturer AMD AMD
Year February 2012 October 2013
Code Name Cape Verde XT Oland XT
Fab Process 28 nm 28 nm
Bus PCIe 3.0 x16 PCIe 3.0 x16
Memory 1024 MB 1024 MB
Core Speed 1000 MHz 1000 MHz
Shader Speed N/A MHz (N/A) MHz
Memory Speed 4500 MHz 4600 MHz
Unified Shaders 640 384
Texture Mapping Units 40 24
Render Output Units 16 8
Bus Type GDDR5 GDDR5
Bus Width 128-bit 128-bit
DirectX Version DirectX 11.1 DirectX 11.2
OpenGL Version OpenGL 4.2 OpenGL 4.3
Power (Max TDP) 80 watts 65 watts
Shader Model 5.0 5.0
Bandwidth 72000 MB/sec 73600 MB/sec
Texel Rate 40000 Mtexels/sec 24000 Mtexels/sec
Pixel Rate 16000 Mpixels/sec 8000 Mpixels/sec

Memory Bandwidth: Bandwidth is the max amount of information (measured in megabytes per second) that can be transported across the external memory interface in a second. It's worked out by multiplying the card's interface width by its memory speed. In the case of DDR type memory, the result should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The better the bandwidth is, the better the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be processed per second. This figure is worked out by multiplying the total amount of texture units by the core speed of the chip. The higher this number, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics card can possibly write to the local memory in one second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel output rate is also dependant on many other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing