Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTX 560 Ti vs Radeon R7 240

Intro

The GeForce GTX 560 Ti has a clock frequency of 822 MHz and a GDDR5 memory frequency of 1002 MHz. It also uses a 256-bit bus, and makes use of a 40 nm design. It features 384 SPUs, 64 TAUs, and 32 ROPs.

Compare all that to the Radeon R7 240, which makes use of a 28 nm design. AMD has set the core frequency at 730 MHz. The DDR3 memory runs at a frequency of 900 MHz on this model. It features 320 SPUs as well as 20 Texture Address Units and 8 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon R7 240 30 Watts
GeForce GTX 560 Ti 170 Watts
Difference: 140 Watts (467%)

Memory Bandwidth

Theoretically speaking, the GeForce GTX 560 Ti should perform a lot faster than the Radeon R7 240 overall. (explain)

GeForce GTX 560 Ti 128256 MB/sec
Radeon R7 240 28800 MB/sec
Difference: 99456 (345%)

Texel Rate

The GeForce GTX 560 Ti will be quite a bit (approximately 260%) more effective at texture filtering than the Radeon R7 240. (explain)

GeForce GTX 560 Ti 52608 Mtexels/sec
Radeon R7 240 14600 Mtexels/sec
Difference: 38008 (260%)

Pixel Rate

The GeForce GTX 560 Ti will be a lot (more or less 350%) more effective at AA than the Radeon R7 240, and also will be capable of handling higher resolutions without slowing down too much. (explain)

GeForce GTX 560 Ti 26304 Mpixels/sec
Radeon R7 240 5840 Mpixels/sec
Difference: 20464 (350%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 560 Ti

Amazon.com

Radeon R7 240

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 560 Ti Radeon R7 240
Manufacturer nVidia AMD
Year January 2011 October 2013
Code Name GF114 Oland PRO
Memory 1024 MB 2048 MB
Core Speed 822 MHz 730 MHz
Memory Speed 4008 MHz 1800 MHz
Power (Max TDP) 170 watts 30 watts
Bandwidth 128256 MB/sec 28800 MB/sec
Texel Rate 52608 Mtexels/sec 14600 Mtexels/sec
Pixel Rate 26304 Mpixels/sec 5840 Mpixels/sec
Unified Shaders 384 320
Texture Mapping Units 64 20
Render Output Units 32 8
Bus Type GDDR5 DDR3
Bus Width 256-bit 128-bit
Fab Process 40 nm 28 nm
Transistors 1950 million 1040 million
Bus PCIe x16 PCIe 3.0 x16
DirectX Version DirectX 11 DirectX 11.2
OpenGL Version OpenGL 4.1 OpenGL 4.3

Memory Bandwidth: Memory bandwidth is the maximum amount of data (in units of MB per second) that can be moved past the external memory interface in a second. It's worked out by multiplying the card's bus width by its memory speed. If the card has DDR RAM, it must be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The better the card's memory bandwidth, the faster the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be processed per second. This is calculated by multiplying the total number of texture units by the core speed of the chip. The better this number, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels in a second.

Pixel Rate: Pixel rate is the most pixels that the graphics card can possibly write to the local memory in a second - measured in millions of pixels per second. The figure is worked out by multiplying the number of ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate is also dependant on quite a few other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]