Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

Radeon HD 6570 (OEM) 2GB vs Radeon R7 240

Intro

The Radeon HD 6570 (OEM) 2GB has a GPU clock speed of 650 MHz, and the 1024 MB of GDDR5 memory is set to run at 1000 MHz through a 128-bit bus. It also is comprised of 480 Stream Processors, 24 TAUs, and 8 Raster Operation Units.

Compare those specs to the Radeon R7 240, which makes use of a 28 nm design. AMD has clocked the core frequency at 730 MHz. The DDR3 memory is set to run at a speed of 900 MHz on this particular model. It features 320 SPUs as well as 20 TAUs and 8 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon R7 240 30 Watts
Radeon HD 6570 (OEM) 2GB 50 Watts
Difference: 20 Watts (67%)

Memory Bandwidth

The Radeon HD 6570 (OEM) 2GB should in theory perform much faster than the Radeon R7 240 overall. (explain)

Radeon HD 6570 (OEM) 2GB 64000 MB/sec
Radeon R7 240 28800 MB/sec
Difference: 35200 (122%)

Texel Rate

The Radeon HD 6570 (OEM) 2GB is just a bit (about 7%) better at anisotropic filtering than the Radeon R7 240. (explain)

Radeon HD 6570 (OEM) 2GB 15600 Mtexels/sec
Radeon R7 240 14600 Mtexels/sec
Difference: 1000 (7%)

Pixel Rate

If using a high resolution is important to you, then the Radeon R7 240 is superior to the Radeon HD 6570 (OEM) 2GB, though not by far. (explain)

Radeon R7 240 5840 Mpixels/sec
Radeon HD 6570 (OEM) 2GB 5200 Mpixels/sec
Difference: 640 (12%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

Radeon HD 6570 (OEM) 2GB

Amazon.com

Radeon R7 240

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model Radeon HD 6570 (OEM) 2GB Radeon R7 240
Manufacturer AMD AMD
Year February 2011 October 2013
Code Name Turks Oland PRO
Memory 1024 MB 2048 MB
Core Speed 650 MHz 730 MHz
Memory Speed 4000 MHz 1800 MHz
Power (Max TDP) 50 watts 30 watts
Bandwidth 64000 MB/sec 28800 MB/sec
Texel Rate 15600 Mtexels/sec 14600 Mtexels/sec
Pixel Rate 5200 Mpixels/sec 5840 Mpixels/sec
Unified Shaders 480 320
Texture Mapping Units 24 20
Render Output Units 8 8
Bus Type GDDR5 DDR3
Bus Width 128-bit 128-bit
Fab Process 40 nm 28 nm
Transistors 715 million 1040 million
Bus PCIe 2.1 x16 PCIe 3.0 x16
DirectX Version DirectX 11 DirectX 11.2
OpenGL Version OpenGL 4.1 OpenGL 4.3

Memory Bandwidth: Memory bandwidth is the maximum amount of information (in units of MB per second) that can be transported past the external memory interface in a second. It's calculated by multiplying the interface width by the speed of its memory. In the case of DDR memory, the result should be multiplied by 2 once again. If DDR5, multiply by 4 instead. The better the memory bandwidth, the better the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be processed in one second. This number is worked out by multiplying the total texture units of the card by the core clock speed of the chip. The better this number, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the maximum amount of pixels the video card can possibly write to the local memory per second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of Raster Operations Pipelines by the the core speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate also depends on quite a few other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]