Join Us On Facebook

Compare any two graphics cards:
VS

Radeon HD 7750 vs Radeon R7 240

Intro

The Radeon HD 7750 comes with a clock frequency of 800 MHz and a GDDR5 memory speed of 1125 MHz. It also makes use of a 128-bit memory bus, and uses a 28 nm design. It is made up of 512 SPUs, 32 TAUs, and 16 ROPs.

Compare those specs to the Radeon R7 240, which comes with GPU core speed of 730 MHz, and 2048 MB of DDR3 RAM running at 900 MHz through a 128-bit bus. It also is made up of 320 SPUs, 20 TAUs, and 8 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon R7 240 30 Watts
Radeon HD 7750 55 Watts
Difference: 25 Watts (83%)

Memory Bandwidth

Performance-wise, the Radeon HD 7750 should in theory be much superior to the Radeon R7 240 overall. (explain)

Radeon HD 7750 72000 MB/sec
Radeon R7 240 28800 MB/sec
Difference: 43200 (150%)

Texel Rate

The Radeon HD 7750 should be quite a bit (about 75%) faster with regards to AF than the Radeon R7 240. (explain)

Radeon HD 7750 25600 Mtexels/sec
Radeon R7 240 14600 Mtexels/sec
Difference: 11000 (75%)

Pixel Rate

The Radeon HD 7750 will be much (more or less 119%) better at full screen anti-aliasing than the Radeon R7 240, and also will be able to handle higher resolutions while still performing well. (explain)

Radeon HD 7750 12800 Mpixels/sec
Radeon R7 240 5840 Mpixels/sec
Difference: 6960 (119%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Radeon HD 7750

Amazon.com

Radeon R7 240

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model Radeon HD 7750 Radeon R7 240
Manufacturer AMD AMD
Year February 2012 October 2013
Code Name Cape Verde Pro Oland PRO
Fab Process 28 nm 28 nm
Bus PCIe 3.0 x16 PCIe 3.0 x16
Memory 1024 MB 2048 MB
Core Speed 800 MHz 730 MHz
Shader Speed N/A MHz (N/A) MHz
Memory Speed 1125 MHz (4500 MHz effective) 900 MHz (1800 MHz effective)
Unified Shaders 512 320
Texture Mapping Units 32 20
Render Output Units 16 8
Bus Type GDDR5 DDR3
Bus Width 128-bit 128-bit
DirectX Version DirectX 11.1 DirectX 11.2
OpenGL Version OpenGL 4.2 OpenGL 4.3
Power (Max TDP) 55 watts 30 watts
Shader Model 5.0 5.0
Bandwidth 72000 MB/sec 28800 MB/sec
Texel Rate 25600 Mtexels/sec 14600 Mtexels/sec
Pixel Rate 12800 Mpixels/sec 5840 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of information (counted in megabytes per second) that can be transferred across the external memory interface within a second. It is worked out by multiplying the card's interface width by the speed of its memory. If the card has DDR type memory, it must be multiplied by 2 again. If DDR5, multiply by 4 instead. The higher the bandwidth is, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be processed per second. This figure is calculated by multiplying the total number of texture units by the core speed of the chip. The higher the texel rate, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in a second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics chip can possibly record to its local memory in a second - measured in millions of pixels per second. The number is worked out by multiplying the amount of colour ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel output rate also depends on many other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the potential to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree