Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTX 570 vs Geforce GTX 760

Intro

The GeForce GTX 570 makes use of a 40 nm design. nVidia has set the core speed at 732 MHz. The GDDR5 RAM is set to run at a speed of 950 MHz on this model. It features 480 SPUs as well as 60 TAUs and 40 Rasterization Operator Units.

Compare all of that to the Geforce GTX 760, which features clock speeds of 980 MHz on the GPU, and 1502 MHz on the 2048 MB of GDDR5 RAM. It features 1152 SPUs along with 96 TAUs and 32 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Geforce GTX 760 170 Watts
GeForce GTX 570 219 Watts
Difference: 49 Watts (29%)

Memory Bandwidth

Performance-wise, the Geforce GTX 760 should theoretically be quite a bit superior to the GeForce GTX 570 overall. (explain)

Geforce GTX 760 192256 MB/sec
GeForce GTX 570 152000 MB/sec
Difference: 40256 (26%)

Texel Rate

The Geforce GTX 760 is quite a bit (approximately 114%) better at AF than the GeForce GTX 570. (explain)

Geforce GTX 760 94080 Mtexels/sec
GeForce GTX 570 43920 Mtexels/sec
Difference: 50160 (114%)

Pixel Rate

The Geforce GTX 760 will be a little bit (approximately 7%) more effective at AA than the GeForce GTX 570, and also able to handle higher resolutions without losing too much performance. (explain)

Geforce GTX 760 31360 Mpixels/sec
GeForce GTX 570 29280 Mpixels/sec
Difference: 2080 (7%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 570

Amazon.com

Geforce GTX 760

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 570 Geforce GTX 760
Manufacturer nVidia nVidia
Year December 2010 June 2013
Code Name GF110 GK104
Memory 1280 MB 2048 MB
Core Speed 732 MHz 980 MHz
Memory Speed 3800 MHz 6008 MHz
Power (Max TDP) 219 watts 170 watts
Bandwidth 152000 MB/sec 192256 MB/sec
Texel Rate 43920 Mtexels/sec 94080 Mtexels/sec
Pixel Rate 29280 Mpixels/sec 31360 Mpixels/sec
Unified Shaders 480 1152
Texture Mapping Units 60 96
Render Output Units 40 32
Bus Type GDDR5 GDDR5
Bus Width 320-bit 256-bit
Fab Process 40 nm 28 nm
Transistors 3000 million 3540 million
Bus PCIe x16 PCIe 3.0 x16
DirectX Version DirectX 11 DirectX 11.0
OpenGL Version OpenGL 4.1 OpenGL 4.3

Memory Bandwidth: Memory bandwidth is the maximum amount of data (measured in MB per second) that can be moved across the external memory interface in one second. The number is worked out by multiplying the card's bus width by its memory speed. In the case of DDR type RAM, it must be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The higher the bandwidth is, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied in one second. This number is calculated by multiplying the total amount of texture units of the card by the core speed of the chip. The higher the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics card can possibly write to its local memory per second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the amount of ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate also depends on many other factors, most notably the memory bandwidth - the lower the bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]