Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTX 570 vs Geforce GTX 760

Intro

The GeForce GTX 570 makes use of a 40 nm design. nVidia has clocked the core speed at 732 MHz. The GDDR5 RAM runs at a frequency of 950 MHz on this specific model. It features 480 SPUs along with 60 Texture Address Units and 40 Rasterization Operator Units.

Compare all of that to the Geforce GTX 760, which has core speeds of 980 MHz on the GPU, and 1502 MHz on the 2048 MB of GDDR5 RAM. It features 1152 SPUs as well as 96 TAUs and 32 Rasterization Operator Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Geforce GTX 760 170 Watts
GeForce GTX 570 219 Watts
Difference: 49 Watts (29%)

Memory Bandwidth

Theoretically speaking, the Geforce GTX 760 should be quite a bit faster than the GeForce GTX 570 overall. (explain)

Geforce GTX 760 192256 MB/sec
GeForce GTX 570 152000 MB/sec
Difference: 40256 (26%)

Texel Rate

The Geforce GTX 760 will be much (approximately 114%) more effective at AF than the GeForce GTX 570. (explain)

Geforce GTX 760 94080 Mtexels/sec
GeForce GTX 570 43920 Mtexels/sec
Difference: 50160 (114%)

Pixel Rate

The Geforce GTX 760 is a small bit (approximately 7%) more effective at AA than the GeForce GTX 570, and also should be able to handle higher resolutions without losing too much performance. (explain)

Geforce GTX 760 31360 Mpixels/sec
GeForce GTX 570 29280 Mpixels/sec
Difference: 2080 (7%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 570

Amazon.com

Geforce GTX 760

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 570 Geforce GTX 760
Manufacturer nVidia nVidia
Year December 2010 June 2013
Code Name GF110 GK104
Memory 1280 MB 2048 MB
Core Speed 732 MHz 980 MHz
Memory Speed 3800 MHz 6008 MHz
Power (Max TDP) 219 watts 170 watts
Bandwidth 152000 MB/sec 192256 MB/sec
Texel Rate 43920 Mtexels/sec 94080 Mtexels/sec
Pixel Rate 29280 Mpixels/sec 31360 Mpixels/sec
Unified Shaders 480 1152
Texture Mapping Units 60 96
Render Output Units 40 32
Bus Type GDDR5 GDDR5
Bus Width 320-bit 256-bit
Fab Process 40 nm 28 nm
Transistors 3000 million 3540 million
Bus PCIe x16 PCIe 3.0 x16
DirectX Version DirectX 11 DirectX 11.0
OpenGL Version OpenGL 4.1 OpenGL 4.3

Memory Bandwidth: Memory bandwidth is the maximum amount of information (in units of MB per second) that can be transferred across the external memory interface within a second. It is calculated by multiplying the card's bus width by its memory speed. In the case of DDR type memory, the result should be multiplied by 2 once again. If it uses DDR5, multiply by 4 instead. The better the memory bandwidth, the faster the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are processed in one second. This number is worked out by multiplying the total amount of texture units of the card by the core clock speed of the chip. The higher the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics card can possibly record to its local memory per second - measured in millions of pixels per second. The figure is worked out by multiplying the amount of Raster Operations Pipelines by the clock speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate is also dependant on many other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]